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Abstract
The use of classifiers provides an alternative to conventional statistical methods. This involves 
using the accuracy with which data is correctly assigned to a given group by the classifier to apply 
tests to compare the performance of classifiers. The conventional validation methods for 
determining the accuracy of classifiers have the disadvantage that the distribution of correct 
classifications does not follow any known distribution, and therefore, the application of statistical 
tests is problematic. Independent validation circumvents this problem and allows the use of 
binomial tests to assess the performance of classifiers. However, independent validation accuracy is 
subject to bias for small training datasets. The present study shows that a hyperbolic function can 
be used to estimate the loss in classifier accuracy for independent validation. This function is used 
to develop three new methods to estimate the classifier accuracy for small training sets more 
precisely. These methods are compared to two existing methods in a simulation study. The results 
indicate overall small errors in the estimation of classifier accuracy and indicate that independent 
validation can be used with small samples. A least square estimation approach seems best suited to 
estimate the classifier accuracy.
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Independent Validation as a Validation Method for Classification
The study of group differences is of particular importance in all of the empirical sciences, 
as indicated by a high number of publications (Wee, 2000; Weisberg et al., 2011; Zhao 
et al., 2020). For example, Counsell and Harlow (2017) showed that nearly 40% of all 
analyses included a univariate comparison of means, and ANOVAs as well as z- and 
t-tests were among the most popular methods. Both parametric and nonparametric tests 
make certain assumptions (Beins & McCarthy, 2019; Kim & von Oertzen, 2018), which 
can be a potential source of error if not fulfilled. For situations where these assumptions 
cannot be met, the usage of classifiers has been proposed as an alternative (Kim & von 
Oertzen, 2018).

In this approach, a classifier is trained to identify the group of a participant based 
on the data. If both groups do not differ, no classifier is able to perform better than 
guessing on this task. A performance above guessing ensures that the groups differ. 
For an illustration, assume a researcher wants to identify how strongly smokers and 
non-smokers differ in a reaction task, where the result of the reaction task is of an 
unknown distribution. They set up this question as a task to identify whether a person 
is a smoker or a non-smoker based on the reaction task result. If a classifier is able to 
detect smokers better than by just guessing the more frequent group, this indicates that 
the outcome’s distribution differs between smokers and non-smoker. The approach and 
its requirements will be described in more detail in the next section.

Testing group differences by classifiers requires to estimate the accuracy of a clas­
sifier. Multiple methods exist for this estimation. However, for conventional methods, 
the distribution of correct classifications does not follow any known distribution. This 
prevents the unbiased use of binomial tests. To circumvent this problem, Independent 
Validation (IV) was suggested (Kim & von Oertzen, 2018). An advantage of IV is that the 
accuracy of the classifier is unbiased through dependencies within the data. However, IV 
is a process in which the accuracy, with which new data points are classified, changes. 
This will produce some estimation bias for low N. For this purpose, this article will begin 
by revisiting how to use classifiers to analyze group differences without known group 
distributions and briefly sketch the associated complications. Then, IV will be revisited 
more closely, in particular the expected accuracy for small training set sizes. The aim 
of the present study is to investigate how small training set sizes can be used in the IV 
process and to compare different methods to estimate the classifier IV-accuracy.

Using Classifiers to Analyze Group Differences
One problem with using classical methods to study group differences is that it is fre­
quently not reported whether the underlying assumptions have been tested (Counsell 
& Harlow, 2017; Hoekstra et al., 2012). Regardless of whether the assumptions have not 
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been tested or were merely not reported, the transparency and replicability of research is 
limited due to transparency issues. An alternative method for studying group differences 
that does not require testing assumptions would, hence, be advantageous. Such a method 
has been proposed in the shape of using classifier vectors (Bay & Pazzani, 2001; Kim & 
von Oertzen, 2018). Most classifiers do not require any model assumptions concerning 
the distribution of the data. This makes them particularly suited to investigate situations 
where no model of the data is available, as is, for example, often the case with big 
data (Chen et al., 2012). Examples for classifiers are k-NN classifier, support vector 
machines (Cortes & Vapnik, 1995), random decision forests (Ho, 1995), and decision 
trees (Quinlan, 1986). Different classifiers are differently well suited to varying types of 
data sets. Choosing a classifier suited to one’s data increases the chances to find group 
differences present in the data. A wide range of literature already addresses this problem 
(e.g., Bishop, 2006). In addition, a suitable method is required to estimate the classifier’s 
accuracy. The current article focuses on this second requirement.

As classifiers are used to detect group differences, the Linear Discriminant Analysis 
(LDA) is chosen in this article. LDA will be introduced in the next subsection. However, 
the estimation of the accuracy is analogous for most other classifiers.

To revisit the smoker vs. non-smoker example, the researcher uses an LDA on their 
data to train it on separating smokers from non-smokers. Using the methods introduced 
in this article, they then estimate the probability that a new participant for whom only 
the reaction task data is known is correctly classified as smoker or non-smoker. If this 
probability exceeds the probability one would have by just picking the larger group, this 
indicates that smokers and non-smokers differ in the reaction task.

Linear Discriminant Analysis
LDA was introduced in its original form by Fisher (1936) as a method aimed at finding 
variables that best distinguish the data of groups (Boedeker & Kearns, 2019). Later, the 
method was developed further to enable predicting group membership (Boedeker & 
Kearns, 2019; Huberty & Hussein, 2003). For a data set with two groups and a number of 
continuous variables, a training data set is formed from both groups. This training data 
set is used to calculate the joint estimated covariance matrix and mean for each group. 
Then, with respect to the joint covariance matrix, the distances of a new data point to 
the respective estimated means of both groups are calculated. The new item is assigned 
to the class to which the distance is smaller. This constitutes a maximum likelihood 
approach, as the item is assigned to the group with the higher likelihood. It is apparent 
that LDA is more complex than other classifiers like k-NN but performs better in many 
situations (Boedeker & Kearns, 2019).
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Validation of Classifiers
Classifiers can classify new elements more or less reliably. The accuracy of a classifier is 
a performance indicator to quantify this reliability. In the example above, the accuracy 
would be the probability to detect a smoker or non-smoker correctly. The measure 
indicates the probability with which an element drawn randomly from the population is 
correctly classified (Kohavi, 1995). The optimal accuracy is usually not known. However, 
with the help of test runs, the accuracy can be estimated. This estimation is typically 
performed by computing the percentage of correctly classified elements out of the total 
number of classified elements. Therefore, information on the actual affiliation of the 
elements is necessary, meaning that the group membership needs to be known.

If there are two equally sized groups in a study situation, but the data does not differ 
between the groups, the classifier cannot detect a pattern that associates the expressions 
with the respective group membership. Thus, it would only guess the group of new 
elements with an accuracy of 50%. Consequently, if a classifier assigns new items better 
than a coin toss would, there must be differences between the groups (Kim & von 
Oertzen, 2018). Accordingly, when examining group differences, it is only by comparing 
the accuracy of the classifier with the accuracy of a coin toss classifier that it is possible 
to assess whether differences exist between groups. Therefore, the classifier accuracy is 
of central importance in the study of group differences using classifiers.

In the past, various validation procedures have been introduced to determine the 
classifier accuracy. The basic problem of all validation methods is primarily that in the 
practical application usually only a limited sample size is available. This limited data 
set must then be used to train the classifier. At the same time, however, the classifier 
accuracy must also be estimated on the same data set (Sahiner et al., 2008). To ensure 
independence between the tests of the tested items, it must be avoided to evaluate 
the performance of the classifier on elements that are simultaneously included in the 
training data set.

The simplest method to address this problem is the holdout or test set method, 
illustrated in a simple example in the upper left panel of Figure 1. In this method, the 
data set is divided into two mutually exclusive subsamples: the training data set and the 
test data set (Kohavi, 1995; Santafe et al., 2015). The training data set is used exclusively 
for the learning phase of the validation, while the classifier accuracy is estimated on 
the test data set. In the example above, the points would be participants with some 
properties describing the reaction task on the horizontal and vertical axes. The classifier 
is trained on the training set (solid points in Figure 1), and its performance is then 
estimated on the holdout set (gray points in Figure 1).
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Figure 1

Illustration of Cross Validation vs. Independent Validation

Note. Filled and empty circles represent data points of two classes. In holdout validation (upper left panel), the 
gray data points are used for testing the classifier trained on all non-gray data points. In CV (upper panels), 
folds (here of four data points) are used to test the classifier trained on all other data points similar to the 
holdout validation, but afterwards, the next fold of same size is used for testing, again using all other points as 
training set. LOO validation is a special case of CV where the folds contain only one data point. In IV (lower 
panels), an initial set (non-gray points) is used for training, then one point of the remaining data points is 
tested. In the next step, this point is added to the training set, and a new point is tested (2nd lower panel), 
which is then repeated for all other points (3rd lower panel). This way, no data point is tested which has been 
used before to train the classifier, ensuring independence of the tests.

Although the holdout method is one of the simplest methods, it bears some problems. 
For instance, the performance of the classifier suffers from a small training data set as 
the already limited data set is further subdivided (Kim & von Oertzen, 2018). According 
to Santafe et al. (2015), the holdout estimator overestimates the error of the classifier, 
resulting in an underestimation of the accuracy.

More common is the k-fold cross-validation method (CV; Kohavi, 1995). The three 
upper panels in Figure 1 illustrate three steps in CV. In this method, the data is randomly 
divided into k folds of equal size. The classifier is then trained on k − 1 folds, and finally 
performance is tested on the one remaining fold. This process is repeated for all k 
folds, resulting in k classification models and thus as many estimates of the classifier’s 
performance. For the estimation of the accuracy, the mean value of k individual estimates 
is calculated (Santafe et al., 2015). According to Kim and von Oertzen (2018), CV is 
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characterized by higher statistical power at higher numbers of folds. With more folds, the 
size of the actual training data set per run increases. This allows the classifier to learn 
the patterns in the data more effectively. Regardless of the choice of the training data 
set size per run, the total number of tested items remains the same across all runs, and 
the training set in each run remains as large as possible as it includes k − 1

k N  elements 
of the data set when N is the total size of the data set. However, CV is also subject 
to bias, albeit reduced compared to the holdout method (Santafe et al., 2015). As the 
number of folds in CV increases (i.e., a larger training data set per run), the variance of 
the performance estimator tends to increase. If the number of folds is maximized (i.e., 
k = N ), this represents a special case of CV and is referred to as the Leave One Out 
(LOO) method.

Lanka et al. (2020) conclude from the results of previous work that the accuracy 
of classifiers using CV, while considered high on the training set, reduces dramatically 
when the classifier is applied to a new sample (i.e., a sample not previously used in the 
CV process). At the same time, Bouckaert (2003) points out that dependencies arise in 
the process of CV as a result of repeated use of the data. In CV, it is true that none of 
the elements of the data set are used at the same time to train and test the classifier, 
which would violate the requirement of independence. Nevertheless, all elements are 
used multiple times to train the classifier, which violates the independence assumptions 
of most hypothesis tests.

If the data is not independent, CV accuracy is too optimistic and overestimates the 
actual accuracy, consequently leading to a too liberal significance test (Kohavi, 1995). 
In contrast, if the data is independent, it is commonly assumed that the CV accuracy 
is binomially distributed (see Salzberg, 1997). Several studies have shown that this 
assumption is incorrect. In fact, Salzberg (1997) himself notes that while all test sets 
are independent in k-fold CV, the training sets are clearly not due to the overlaps in 
the process of CV. According to Dietterich (1998) and Bouckaert (2003), alpha error 
accumulation occurs when CV is used in practice. To eliminate the dependencies in both 
testing and learning phases, Kim and von Oertzen (2018) propose IV.

Independent Validation
With this new method, the accuracy is measured only with elements that were not 
already included in previous steps for training the classifier (see the three lower panels 
of Figure 1). For this purpose, the authors establish the minimal condition by which the 
estimates of the accuracies are independent. Accordingly, no element that is to be classi­
fied in the test run may have previously been part of a training set during the validation 
process. If this condition is met, the classifications in the test runs are independent of one 
another. Since the resulting independent classification results from the test runs are the 
basis for estimating the accuracy of the classifier, the independence requirement is thus 
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satisfied. Therefore, the estimated IV accuracy can be used in significance tests to find 
group differences or to compare different classifiers with each other.

The IV process is logically constructed according to the minimal condition. First, the 
entire data set is divided into a small initial training set and a test set. The test set also 
has the function of a residual pool. For both subsets, the data is drawn randomly, with 
only the number of elements predetermined. After the initial split, one or more data 
points are randomly drawn from the test data set and classified by the classifier. After 
this first test run, the tested elements are removed from the test data set and assigned 
to the training data set instead. The classifier is then trained again, including the new 
elements that have already been tested. This process is repeated with new single or 
multiple elements and continues until all elements of the test set have been used. Hence, 
elements are only transferred from the test set to the training set but not vice versa.

In the smoker example, the data set would be separated in a small group of partic­
ipants for which it is known whether they smoke. The classifier is trained on those 
and then asked to classify one of the remaining participants. The classifier outcome of 
smoker or non-smoker is then compared to the true smoking status of that participant. 
Since this participant now has been tested, they are added to the training pool in the 
next step. Now the classifier trains with a training set one participant larger than before. 
Again, a new participant not in the training set is used to check whether the classifier 
is able to detect them as smoker or not, and then the participant is again added to the 
training set.

The estimated accuracy of IV is binomially distributed and can therefore be used for 
statistical testing (Kim & von Oertzen, 2018). The qualitative properties of IV correspond 
to those of CV. When comparing IV with the LOO method, it is noticeable that the 
final size of the training set is smaller for IV. Therefore, according to Kim and von 
Oertzen (2018), the estimated accuracy of IV is lower than that of the LOO method 
for small sample sizes. However, unlike LOO or CV in general, IV offers the advantage 
of independent estimates of classifier accuracy in the different runs. Compared to the 
conventional holdout method, IV shows a much higher power (Kim & von Oertzen, 
2018).

In summary, IV has an advantage over CV and LOO methods in the applicability of 
statistical tests. At the same time, IV is a reasonable alternative to the holdout method 
due to its higher statistical power. This had previously been the only method that 
allowed valid use of tests to compare the performances of two classifiers (Kim & von 
Oertzen, 2018).

Formal Definitions
Building on Bax (2012), Boucheron et al. (2005), and Kim and von Oertzen (2018), the 
following definitions are made: Let Ω = (x, G) = ℝK × − 1, 1  be a population. The 
elements of the population are pairs of K traits x ∈ ℝK and a dichotomous class varia­
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ble (groups) G ∈ − 1, 1 . In this study, we will restrict ourselves to the case K = 1 
for simplicity; however, all results transfer to high-dimensional spaces. The data set 
D = (x1, G1), ..., (xN , GN) ⊆ Ω with size N is randomly drawn from the population. Let 
CDx ∈ 0, 1  be the classification result of element x by a classifier. The classification 
result is false if CDx ≠ Gx. Let the random variable pn = P(CD(x) = G) be the estimated 
accuracy of the classifier for the population given a randomly drawn training data set 
of size n, where p = limn ∞pn is the maximum possible accuracy of the classifier for 
the population given sufficiently large training sets. Accordingly, pn is the estimated 
accuracy for a training data set of size n.

According to Kim and von Oertzen (2018), the following formal definition of IV are 
used: Let CDi be a classifier trained with Di = (x1, G1), ..., (xi − 1, Gi − 1) ⊆ D, that is, a sub­
sample of D ⊆ Ω, and let M ≤ N  be a fixed number of tests. Let q = 1

M ∑i = N − M
N δ(CDi, Gi), 

then q is denoted as M-IV of the classifier. As explained above, an initial training set 
of size n = N − M is chosen, and the correctness of the ith classification is tested. Then, 
the ith element is added to the training set. The classifier is trained again with the new 
training data set, and the process is repeated with the element (i + 1). This sequence is 
repeated in the following validation process.

Remaining Issues Concerning Independent Validation
Some aspects of applicability are still unresolved in IV. The authors themselves empha­
size that the choice of the initial training set size is a critical decision and has not yet 
been clarified (Kim & von Oertzen, 2018). According to the authors, this decision is 
comparable to both the selection of the number of folds in the k-fold CV and the chosen 
size ratio of the subsamples in the holdout method. The classifier cannot be trained 
sufficiently in the first runs of the IV process if the initial training data set is too small. If, 
on the other hand, the initial training data set is chosen too large, there are consequently 
too few elements in the test data set to be able to reliably estimate the classifier accuracy. 
The authors suggest an initial size of the training data set of about 20 elements as a guide 
for sufficiently large data sets. At the same time, they point out that the optimal choice of 
the initial training set size should be investigated in the future, which will be addressed 
in the present study.

A second remaining issue concerns the calculation of the accuracy in the context 
of IV. In practice, the result of IV is only a binary string, that is CDi = 1 or CDi = 0 due 
to correct or incorrect classifications. The simplest way to convert these values into an 
estimated accuracy is to calculate the percentage of correct classifications out of the total 
number of completed classifications. However, for a small number of elements in the 
initial training set, the performance of the classifier in the first runs is negatively biased. 
The reason for this is the small size of the training data set in the first runs, which causes 
the classifier to be insufficiently trained. Using the method of calculating the percentage 

Independent Validation of Classifiers 8

Quantitative and Computational Methods in Behavioral Sciences
2023, Article e12069, https://doi.org/10.5964/qcmb.12069

https://www.psychopen.eu/


of correct classifications, each individual classification result is weighted equally. Hence, 
if all classification results are equally weighted, the accuracy tends to be underestimated.

The present article addresses both these points in a single new method that allows 
to estimate the population accuracy of the classifier even for very small N. The method 
starts the initial training set at very small numbers and subsequently corrects for the 
bias by estimating the functional form of the bias in dependency of the training set 
size. Two simulations are used to verify these results: The first simulation confirms the 
functional form of the bias, and the second simulation compares the performance of 
different estimation techniques for the function form. In result, it is possible to estimate 
the classifier accuracy even for very small N in an unbiased and independent form which 
allows for frequentist or Baysian tests.

Development of a Function Estimating the 
Accuracy Bias

In the following section a function is developed that approximates the accuracy bias. Let 
two groups G ∈ − 1, 1  be given in a unidimensional feature space in which the proba­
bility densities of the features of the two groups are described by f−1 and f1. Assume 
further that the groups are classified by a decision point. This situation is presented in 
Figure 2A. The ideal separation in the case of the mapped distributions is the point of the 
intersection f−1(x) = f1(x) of the distribution functions. Without loss of generality, we 
assume that this point is at x = 0.

Assume further that a classifier is trained with a training data set of size n and 
estimates the separation point with standard error SE = SD

n . Here, the SD is a fixed 
constant corresponding to the standard deviation of the estimator for a single element. 
Figure 2B shows the area around the intersection of the distributions enlarged. Again, 
the vertical line at zero corresponds to the ideal separation point. The perpendicular line 
mapped to the left of the ideal by distance Δ represents the separation point estimated 
by the classifier. Δ thus is the error of the estimate for the optimal separation point. The 
error originates from the sampling error in the subsample used by the classifier as the 
training data set.

Asymptotically, the curves in the area near the ideal separation point are approxi­
mately straight. In the following, f−1(x) and f1(x) in Figure 2B are therefore treated as 
straight lines within the depicted sector. The slopes of the curves can be calculated using 
the derivatives of the distribution functions. Thus, the value of f−1′ (0) corresponds to the 
slope of f−1 close to zero, and the value of f1′(0) corresponds to the slope of f1 close to 
zero.

Using the estimated separation point of the classifier with the deviation Δ and the 
ideal separation point results in areas between the two distribution curves in the range 
Δ. The area under f−1 between the ideal and the estimated separation is the loss of 
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probability for correct classifications in group G = − 1 due to the estimation error Δ. 
Thus, more elements from group G = − 1 are classified by the classifier as belonging 
to the class G = 1 due to the estimated separation in Figure 2B. Simultaneously, more 
elements of group G = 1 are classified correctly. This additional probability of obtaining 
correctly classified elements from group G = 1 is the area under f1. Thus, there is a 
simultaneous gain in one group and a loss of correct classifications in the other. The loss 
is always higher than the gain. Therefore, the area of the triangle between f−1 and f1 is 
the net loss of correct classifications and accuracy, respectively. The methods suggested 
here aim at correcting this loss.

The calculation of the area of interest is possible by the formula A = 1
2 ⋅ g ⋅ ℎ, since 

due to the simplifying assumptions it is assumed that the region is a triangle. Therefore, 
the height of the triangle is given by the deviation Δ. The base side of the triangle can 
also be calculated: One part of the base side is given by the value by which f−1 decreases 
in the range between the ideal and the estimated separation. For the second part of the 
base side, the same is true for the slope of f1. Since the estimated cut can also be to the 
right of the ideal separation, absolute values are calculated to ensure generalizability. The 

Figure 2

Deduction to Approximate the Classifier Accuracy Bias

Note. Part A shows the distributions of both groups. The light gray area depicts the probability of incorrect 
classifications. The encircled area is enlarged in part B. Depicted is the deviation Δ of the classifier from the 
ideal separation point.
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absolute values by which f−1 and f1 increase and decrease, respectively, in the relevant 
range are calculated by Δ ⋅ f−1′ (0) and Δ ⋅ f1′(0). Thus, for the base side of the triangle we 
obtain

g = Δ ⋅ ( | f−1′ (0) | + |f1′(0) | ) (1)

If the height of the triangle and Equation 1 are substituted into the formula for the area 
of a triangle, the result is

loss = 1
2 . g . ℎ

       = 1
2 . Δ . (Δ . ( f−1′ (0) + f1′(0) ))

       = 1
2 . Δ

2 . ( f−1′ (0) + f1′(0) )

(2)

Here, loss corresponds to the area of the triangle and thus to the net loss of classifier 
accuracy. Given that the error Δ is distributed with mean M = 0 and standard error 
SE = SD

n , the mean of Δ2 equals ( SDn )
2
. This information can be inserted into Equation 2. 

Therefore, the expected net loss close to zero is approximated by

E(loss) = 1
2 ⋅ (SDn )

2
⋅ ( | f−1′ (0) | + |f1′(0) | )

= SD2( | f−1′ (0) | + |f1′(0) | )
2n

(3)

The error Δ is higher (that is, has a higher standard deviation and thus a higher expected 
absolute value) for smaller training data sets. A large error results in an also large net 
loss of accuracy. For larger training data sets, in contrast, the error Δ and thus the net 
loss of accuracy is minor. Therefore, it should be noted that the approximation of the 
expected net loss is more relevant for small numbers n of elements in the training set.

Equation 3 has the form of a hyperbolic function with respect to n, as generally 
described by

b + a
n (4)

with b = 0 and a = SD2( | f−1′ (0) | + |f1′(0) | )
2 . While the hyperbolic form itself is a very good 

approximation, note that the parameters a and b need to be estimated from the data.
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Development of Alternative Options to Estimate Classifier 
Accuracy
The theoretically deduced knowledge that the classifier accuracy bias for small training 
data sets can be estimated by a hyperbolic function is used in this article to develop 
multiple options to estimate classifier accuracy. All these options have in common that 
the hyperbolic function

t(n) = b − a
n

is used as a model for the accuracy of the classifier (in contrast to Equation 4 above, 
which just modelled the accuracy loss) when trained with a training set of size n. 
As n ∞, the accuracy approaches an asymptote described by the parameter b. The 
parameter a indicates how fast the classifier approaches the asymptote; for a almost zero, 
the classifier is at maximal accuracy even for very few training samples, while larger a 
indicate that a high number of participants is needed to approach the asymptote. In the 
IV process, each tested data point can be used to estimate the parameter of the models. 
Ultimately, the asymptote parameter b is the one of interest; it describes how well the 
classifier works on the population, without bias from low initial sample sizes. If this 
value is larger than could be achieve by guessing, the two groups are different. In the 
following, multiple options to estimate the parameters when applying IV are introduced.

Least Square Estimation

Using the hyperbolic function, least square estimation can be used to estimate the 
parameters, including b depicting maximum classifier accuracy. The formal derivation is 
provided in the following paragraph.

Let (i, ri) ∈ ℕ × 0, 1 be data where i is the number of elements in the training set and ri
is 1 exactly if the classification is correct. We assume the model b − a

i  for the probability 
that ri is one. The least squares distance is

L(a, b) = ∑
i = 1

n (1 − (b − a
i ))

2
ri = 1

(b − a
i )

2
ri = 0

(5)

with derivatives
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∂L(a, b)
∂a = ∑

i = 1

n 2
i
(1 − (b − a

i )) ri = 1

−(b − a
i ) ri = 0

= 2 ∑
i = 1

n ( rii − (bi −
a
i2 ))

(6)

∂L(a, b)
∂b = 2 ∑

i = 1

n − ri + (b − a
i )

= 2nb + 2 ∑
i = 1

n − ri − a
i

(7)

Setting the Equation 7 to zero yields

0 = nb − ∑
i = 1

n ri − a ∑
i = 1

n 1
i

b = 1
n ∑
i = 1

n ri + a ∑
i = 1

n 1
ni = :suc + ac

(8)

As ri is 1 for correct classifications and 0 otherwise, the sum of all ri divided by the num­
ber of elements equals the success rate of the classification. Hence, the first summand of 
the equation is referred to as suc. The second sum (without the leading a) is defined as c 
for the next steps. Inserting Equation 8 into Equation 6 and equating to zero is

0 = ∑
i = 1

n 1
i (ri − suc − ac + a1i )

0 = ∑
i = 1

n ri − suc
i + a ∑

i = 1

n ( − c
i +

1
i2 ) = :d + ae

(9)

Defining the first sum as d and the second as e, the parameter a of the hyperbolic 
function can be computed as

a = − d
e (10)

The values for c, d, and e can be computed from a classification result. These values can 
then in turn be used to compute the parameters a and b of the hyperbolic function, using 
Equations 10 and 8.

Maximum Likelihood Estimation

In order to use all available classification data while correcting for bias in small training 
sets, the likelihood function
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L(Data | a, b) = (∏
nsucc

b − a
n) ⋅ (∏nf ail

1 − b + a
n) (11)

was set up. In this function, nsucc is the number of correct classifications, and nfail is the 
number of incorrect classifications after one run of IV. Thus, the first term of Function 
11 is the product of the probabilities of correct classifications and the second term 
is the product of the probabilities of incorrect classifications. The likelihood function 
is therefore the product of the probabilities of each tested element to be correctly or 
incorrectly classified under the given parameters a and b of the function. Data contains 
the information whether the tested elements were classified correctly or incorrectly, in 
the form of a vector consisting of ones and zeros. The order of binary values in this 
vector corresponds to the order of classification results output in IV for the increasing 
number of elements in the training data set. The function depends on two parameters 
only, which can easily be seen are not overspecified if the data contains both successful 
and failed trials.

Since the parameter b depicts the asymptote, i.e. the maximum classifier accuracy, es­
timating it via maximum likelihood allows to estimate the population classifier accuracy. 
It is further possible to extend this method into a Bayesian approach by adding a prior to 
the maximum likelihood estimation.

The following sections describe two simulations studies, investigating the theoretical 
derivations in this and the previous sections.

Simulation Study 1
To verify whether the equation E(loss) approximates the expected net loss, it was tested 
using a simulation. The goal was to compare the expected net losses based on E(loss)
(see Equation 3) and the losses when simulating 100,000 runs for different numbers n of 
elements in the training data set.

Data Generation
The simulation was done using Java (Arnold et al., 2005). The simulation is split into 
two parts. At first, the underlying data is generated. This data is used for the second 
step, namely the simulation of the learning and testing phase of an classifier using IV. 
Univariate data was simulated from a normal distribution for both groups. Using two 
groups instead of more groups was done for three reasons, (1) it is the most basic case 
of classification, (2) the application onto studying group differences is straightforward, 
and (3) most of the characteristics of more general issues are already included in the 
two-group problem (Flach, 2017). Group sizes were fixed to be equal in the study to avoid 
bias in the results. In the following, the simulation process is explained step by step.
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The maximum number of data samples nmax = 40 was chosen in the initial training 
data set. This cutoff choice was made based on the rule of thumb of n ≈ 20 as proposed 
by Kim and von Oertzen (2018). In order to eliminate dependencies between the individu­
al runs, the program drew a new random number for the feature x for each of the 100,000 
runs. The mean values for the two normal distributions of the characteristics were set as 
M−1 = − 1 for group -1 and M1 = 1 for group 1. The standard deviation was set to SD = 1
for both groups.

Each simulation starts with n = 2 elements in the training dataset. In the first itera­
tion, an element of the class G = − 1 was created. For this element, univariate data 
was drawn from the underlying distribution for the characteristic x. Subsequently, two 
elements of the class G = 1 were produced, and random values were drawn for these two 
elements from the respective defined distribution for the feature x. Then, the element of 
the class G = − 1 and the first element of the class G = 1 were used to train the classifier. 
The data point produced last, which always belonged to the class G = 1, was used for 
testing the classifier.

This process was repeated 100,000 times for each n ∈ 2, 4, 6, ..., nmax , respectively. The 
number n is increased in steps of two in each run to ensure that there were always 
equal numbers of elements from both groups represented in the training data set. Each 
run produced an additional element of class G = 1 to be tested (see Appendix A for the 
script).

LDA was used as the classifier in the simulation. Since random data was drawn from 
normal distributions and the underlying normal distributions in both groups had the 
same standard deviations of SD = 1 for the variable, LDA is appropriate for this data 
(see also Boedeker & Kearns, 2019). For other data, different classifiers may give best 
results. In LDA, the mean values were used to classify the test data points. The datasets 
generated during the current study are available in the Supplementary Materials.

The expected net loss in the simulation was computed as the average distance of the 
best group separation resulting from the position of the two normal distributions and the 
actual average performance of the classifier in the simulation.

Results
As Figure 3 illustrates, the equation E(loss) approximates the expected net loss well 
for larger training sets. This is apparent from the minor differences between the two 
curves from as early as n ≈ 8. However, for small training data set sizes (n < 8), the 
equation E(loss) underestimates the expected loss of accuracy. This is consistent with the 
theoretical consideration that the approximation is less accurate for very small training 
set sizes.
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Figure 3

Approximation of Classifier Accuracy Bias

Note. For each training set size, 100,000 iterations were simulated.

Simulation Study 2
Further research focused on developing a method to more accurately estimate the opti­
mal accuracy based on the correctness of the classification results, while using as much 
of the test data as possible. To this end, five different methods, which estimate the 
classifier accuracy, were compared, two existing and three newly developed ones. The 
existing methods included the computation of the overall accuracy, accumulated over the 
whole test set, and the approach suggested by Kim and von Oertzen (2018) to base the 
accuracy only on training data sets with n ≥ 20. Both these options include a small bias 
since the initial training set size is small. To eliminate this bias, we added the three new 
options mentioned above. As the first new option, least squares estimation was used to 
compute the parameter values of the hyperbolic function. The second option was based 
on the developed maximum likelihood function in combination with an optimization 
algorithm.

Thirdly, the maximum likelihood function was extended by a β(1.05, 1.05) prior, that 
is, a Beta distribution with parameters just above one. Adding this prior to the likelihood 
transforms the method into a Bayesian estimation of the asymptote parameter, which 
is the population accuracy of the classifier. The Bayesian approach hence allows to 
interpret the estimation result directly as a posterior on the difference between the two 
groups, as described by the ability of a classifier to separate them. The Beta prior is 
commonly used for such tasks since it is the conjugated prior of a probability parameter. 
The prior hyperparameters of 1.05 create a mostly flat prior on the interval [0, 1] with a 
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slight maximum at 0.5 and boundary minima at 0 and 1, which helps to avoid numerical 
problems for low n when all trials are hits or fails, respectively.

Data Generation and Accuracy Estimation
The data generation was similar to Simulation Study 1, creating a univariate sample with 
maximum size of nmax = 40. The optimal accuracy to be reached by the classifier was set 
to 0.65, 0.80, or 0.95, respectively. This was achieved by changing the mean differences 
and, therefore, the overlap between the sample distributions. A total of 2,000 trials were 
conducted. The classification result in the shape of a vector consisting of zeros and ones 
was then exported into R (R Core Team, 2021). R was then used to estimate the accuracy 
by the five different methods (see Appendix B for the script).

For each of the five estimation methods we computed the average absolute difference 
from the true optimal classifier accuracy and the average bias from the true value. The 
bias was computed as the average difference from the true value.

For the estimation of the classifier accuracy based on the whole test set, the total 
number of correct classifications was divided by the total number of classification. For 
the estimation based on n ≥ 20, the number of correct classifications with a training set 
size of at least 20 was divided by the total number of classifications. The least square 
estimation was computed using Equations 9 and 8.

For the maximum likelihood estimation an optimization algorithm in combination 
with Equation 11 was used. The lower bound for the parameter a was set to -2, the upper 
bound to 7. These values were chosen based on past experience and depict a reasonable 
range for the parameter. As b is equal to the asymptote of the hyperbolic function and 
this in turn corresponds to the estimated accuracy, b was limited to be larger than 0 and 
smaller than 1, since the accuracy cannot be worse than 0% or better than 100%. The 
results of the least squares estimation were used as starting values for the algorithm, 
unless the least squares estimate exceeded the chosen limits. In these cases, a value of 
-1.99999 or 6.99999 was chosen for a, and 0.00001 or 0.99999 for b, depending on whether 
the lower or upper limit had been exceeded. The optimization algorithm was provided 
with the −log(L), to improve its technical functionality. The optimization algorithm 
returns optimal values for a and b. The value of b is an estimate of the classifier accuracy.

The Bayesian estimation of the classifier accuracy was conducted similarly to the 
maximum likelihood estimation. The only difference was that a β(1.05, 1.05) prior was 
added to the computation of the likelihood. This prior was chosen, as it depicts that clas­
sifiers rarely if ever are able to reach a perfect estimation accuracy of 100%. The datasets 
generated during the current study are available in the Supplementary Materials.
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Results
The results of the comparison are presented in Figure 4. Table 1 shows the average 
absolute differences between the estimation and the true classifier accuracy. A value of 
zero indicates a perfect estimation. The higher the average absolute difference is, the 
stronger does the estimation differ from the true classifier accuracy. Table 2 shows the 
average bias of the estimation. Negative values for the average bias indicate a systematic 
underestimation of the classifier accuracy, positive values indicate an overestimation. A 
value of zero indicates that the estimation under- and overestimates the true classifier 
accuracy to the same degree. Overall, the average absolute difference and average bias 
of all five estimation methods are small. Further, no estimation method can clearly be 
identified as the best option. While the estimation based on the whole test set depicts the 
smallest absolute difference, it also shows a stronger underestimation bias compared to 
the other methods. The least square estimation shows the smallest bias, but one of the 
largest average absolute differences.

Figure 4

Absolute Difference and Bias From the True Accuracy for Different Estimation Methods

Note. Based on a simulation of 2,000 trials with Nmax = 40. Error bars depict standard errors.

In addition to the overall results, Figure 5 shows the absolute difference and average bias 
separately for a small (0.65), medium (0.80), and large (0.95) true classifier accuracy. The 
values are also depicted in Table 1 and Table 2. For small classifier accuracy using all data 
has the smallest absolute difference, but largest underestimation. Maximum likelihood 
and Bayes show the smallest bias, but a slightly higher absolute difference. For a high 
classifier accuracy using all data again shows the smallest absolute difference, here 
combined with one of the smaller biases. While Bayesian estimation shows one of the 
smaller absolute differences, but the largest underestimation.
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Discussion
We investigated the estimation of classifier accuracy in the context of IV at small 
initial training set sizes to derive recommendations for dealing with the bias in these 
situations. A hyperbolic function describing the accuracy bias for small training data 
sets was derived mathematically and empirically confirmed through a simulation study. 
The hyperbolic function was then used to develop new methods to estimate the optimal 
classifier accuracy, accounting for an underestimation when test set sizes are small. Two 
existing estimation methods, computing overall accuracy and computing the accuracy 
for training set sizes with n ≥ 20, were compared with a least square estimation, a maxi­

Table 1

Mean and Standard Error of the Absolute Difference From the True Classifier Accuracy for Different Estimation 
Methods

Total Accuracy = .65 Accuracy = .80 Accuracy = .95

Estimation 
method M SE M SE M SE M SE
Using all data 0.070 0.001 0.093 0.002 0.077 0.001 0.040 0.002

Using n ≥ 20 0.090 0.002 0.116 0.002 0.095 0.002 0.058 0.002

Least squares 0.097 0.002 0.112 0.002 0.115 0.002 0.064 0.002

Maximum likelihood 0.100 0.002 0.121 0.002 0.110 0.002 0.070 0.001

Bayes 0.091 0.002 0.119 0.002 0.105 0.002 0.049 0.001

Note. Based on a simulation of 2,000 trials with nmax = 40. M = mean. SE = standard error.

Table 2

Mean and Standard Error of the Bias From the True Classifier Accuracy for Different Estimation Methods

Total Accuracy = .65 Accuracy = .80 Accuracy = .95

Estimation 
method M SE M SE M SE M SE
Using all data -0.013 0.002 -0.026 0.003 -0.011 0.002 -0.002 0.001

Using n ≥ 20 -0.006 0.003 -0.010 0.003 -0.008 0.003 0.001 0.002

Least squares 0.001 0.003 -0.004 0.003 0.003 0.003 0.004 0.002

Maximum likelihood -0.005 0.003 0.001 0.003 -0.004 0.003 -0.011 0.002

Bayes -0.015 0.003 -0.001 0.003 -0.010 0.003 -0.035 0.002

Note. Based on a simulation of 2,000 trials with nmax = 40. M = mean. SE = standard error.
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mum likelihood estimation, and a Bayesian estimation of the hyperbolic function. While 
overall the absolute differences and average biases were generally small, no estimation 
method could clearly be identified as the best one.

Independent Validation of Classifiers
IV has been suggested as an alternative to CV (Kim & von Oertzen, 2018), given that CV 
is subject to a bias based on the dependencies between training and test sets (Lanka et 
al., 2020). Nevertheless, IV and all other validation methods are also subject to a different 
source of bias, as it underestimates the classifier accuracy for small training set sizes. 
This occurs because of the insufficient training of the classifier due to the small training 
set. The present work presents an equation to estimate this underestimation, which has 
been shown to be reliable from a test set size of n ≥ 8. As an underestimation of the 
classifier accuracy favors falsely rejecting the null hypothesis, the note by Kim and von 
Oertzen (2018) that the choice of the initial training set size is a critical decision for the 
outcome of IV must also be emphasized based on the results found in this study. Yet, the 
decision is less critical than initially thought.

Figure 5

Absolute Difference and Bias From the True Accuracy for Different Estimation Methods and Different Accuracies

Note. Based on a simulation of 2,000 trials with Nmax = 40. Error bars depict standard errors.
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Estimating Classifier Accuracy Using Independent Validation

We compared five different methods to estimate the classifier accuracy in the present 
study. Computing the overall accuracy using all of the available data yielded surprising­
ly good results, even though the classifier accuracy will be underestimated for small 
training set sizes. Excluding the data for training set sizes with n < 20 lead to a smaller 
bias in the estimation, yet the overall absolute difference from the true accuracy was 
larger. Using least squares estimation, maximum likelihood, or Bayesian estimation led 
to similar absolute differences as using n ≥ 20 and maximum likelihood also showed a 
similar bias. Least square estimation could be labeled as an overall unbiased estimation, 
while the bias for Bayesian estimation was the largest. Yet, the bias was at maximum 
1.5%.

The five estimation methods were differently well suited for low, medium, or high 
classifier accuracy. The maximum likelihood or Bayesian approach was best suited for 
a small classifier accuracy. Differences between estimation methods were smaller for 
medium classifier accuracy. For high classifier accuracy, the chosen Bayesian approach 
showed the overall largest bias with an underestimation of 3.5%. This is due to the 
specific prior we chose, a β(1.05, 1.05) distribution. This prior is suitable to adjust for the 
increased risk of extreme classifier accuracies of 100% or 0%, which are more likely to 
occure falsely for small data sets. Yet, when the true accuracy is close to 100% it will lead 
to an underestimation. A different prior would likely yield better results in this case.

Overall, we would advise for the use of the least square estimation. It is overall an 
unbiased estimation and also shows good results when separately investigating small, 
medium, and high classifier accuracies. It has also the advantage of not requiring opti­
mization processes, as is the case for the maximum likelihood and Bayesian approach. 
It is further based on all the available data. If the classifier accuracy is known to be 
low, maximum likelihood or Bayesian estimation is also a good choice. If the classifier 
accuracy is known to be high, simply computing the overall accuracy using all the 
available data also yields good results.

Limitations
Despite the previously described findings and the development of a new method for 
estimating classifier accuracy in the context of IV, some limitations exist with respect to 
the study.

Only two groups were used in this study. However, classifiers can also be used 
in situations where more than two classes are present. This aspect remains unsolved, 
although according to Flach (2017) most characteristics of more general problems are 
already included in binary problems.

Furthermore, all simulations, as well as the theoretical reasoning, were simple cases. 
Univariate normally distributed data was considered, the standard deviations of the 
distributions underlying the characteristics were chosen to be identical for both groups, 
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and the group sizes were defined to be equal. In contrast, when using real data, the 
distributions of the characteristics, as well as the group sizes, are usually different, and 
more than one variable is typically included in the data set. In the present study, simple 
cases were chosen to obtain a clearer view on the estimation of the accuracy using 
small training sets. In more complex conditions, the results would have additionally been 
affected by these factors.

Lastly, our approach assumes that the classifier uses a threshold to separate the 
groups. While this is true for LDA, the classifier we chose, it is not true for every 
classifier, as, for example, k-nearest-neighbors. In such cases our deduction can only 
serve as an analogy and it is unclear if the estimation would be reliable.

Conclusion
Classifiers, among other applications, can also be used to study group differences and are 
particularly promising in this area in some respects. Since previously existing validation 
methods were problematic, especially in the application of statistical tests, Kim and von 
Oertzen (2018) developed IV to circumvent the problems with this method. However, the 
accuracy determined in the validation process is subject to bias in small training sets, 
similar to all other validation techniques. Therefore, this study investigated the accuracy 
estimation on small training datasets.
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Appendix A: Java Script
The following Java script was used for Simulation Study 1 and to generate the classifier outcome 
for Simulation Study 2.
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package classifier;

import java.util.Random;
import org.apache.commons.math3.distribution.NormalDistribution;
import java.io.IOException;
import java.io.FileWriter;

public class SimComparisonOfAccEstMethCorrected {
  
  static Random zufallx = new Random();
  
  public static void main(String[] args) throws IOException {
       getData();
  }
  
  public static void getData() throws IOException {
       
       for (int z = 1; z <=2000; z += 3) {
         int counter = 10000+z;
         FileWriter myWriter = new FileWriter ("simulation_"+counter+".txt");
         myWriter.write("n"+"␣␣"+"correct"+"␣␣"+"true.value");
         myWriter.write("\n");
         int [] sum = getClassificationResultsReal246(0.770640933);
         int [] N = getN(40);
         double accopt = getAccOpt (0.770640933);
         for (int i = 0; i<20; i++) {
              myWriter.write(N[i]+"␣␣"+sum[i]+"␣␣"+accopt);
              myWriter.write("\n");
              if (i==19) myWriter.close();
         }
       }
       
       for (int z = 2; z <=2000; z += 3) {
         int counter = 10000+z;
         FileWriter myWriter = new FileWriter ("simulation_"+counter+".txt");
         myWriter.write("n"+"␣␣"+"correct"+"␣␣"+"true.value");
         myWriter.write("\n");
         int [] sum = getClassificationResultsReal246(1.683242467);
         int [] N = getN(40);
         double accopt = getAccOpt (1.683242467);
         for (int i = 1; i<20; i++) {
              myWriter.write(N[i]+"␣␣"+sum[i]+"␣␣"+accopt);
              myWriter.write("\n");
              if (i==19) myWriter.close();
         }
       }
       
       for (int z = 3; z <=2000; z += 3) {
         int counter = 10000+z;
         FileWriter myWriter = new FileWriter ("simulation_"+counter+".txt");
         myWriter.write("n"+"␣␣"+"correct"+"␣␣"+"true.value");
         myWriter.write("\n");
         int [] sum = getClassificationResultsReal246(3.289707254);
         int [] N = getN(40);
         double accopt = getAccOpt (3.289707254);
         for (int i = 1; i<20; i++) {
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              myWriter.write(N[i]+"␣␣"+sum[i]+"␣␣"+accopt);
              myWriter.write("\n");
              if (i==19) myWriter.close();
         }
       }
       System.out.println("Done");
  }
  
  public static double getAccOpt(double mean) {
       double stdv11 = 1.0, mean11 = 0;
       double mu = mean;
       double accOpt = calcAccOpt (mu, mean11);
       return accOpt;
  }
  
  public static int [] getN(int its) {
       int [] N = new int [its/2];
       for (int n = 0; n<its/2; n++) {
         N[n] = (n+1)*2;
       }
       return N;
  }
  
  // Classifies all data in steps of two
  public static int [] getClassificationResultsReal246 (double mean) {
       double stdv11 = 1.0, mean11 = 0;
       double mu = mean;
       double accOpt = calcAccOpt (mu, mean11);
       double stdv21 = 1.0, mean21 = mu;
       int s = 40;
       int [] correctClassification = new int [s/2];
       int[] group = new int[42];
         double[][] feature = new double[42][1];
       
       for (int i=0, a=1; i<41 && a<=41; i=i+2, a=a+2) {
         group[i]=-1;
         group[a]=1;
         feature[i][0]=randomXample(stdv11, mean11);
         feature[a][0]=randomXample(stdv21, mean21);
       }
       
       for (int i = 2; i<=41; i+=2) {
         LinearDiscriminantAnalysis lda = new
           LinearDiscriminantAnalysis(feature, group);
         lda.ignoreAPrioris = true;
         lda.ignoreCovariance = true;
         lda.useLinearClassifier = true;
         lda.trainData(0, i);
         int r = lda.classify(feature[i]);
         boolean correct = (r == group[i]);
         correctClassification[i/2-1] = correct ? 1:0;
         if (i == 40) System.out.println(lda.leaveOneOutBAC());
       }
       return correctClassification;
  }
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  // Classifies all data, beginning at the second
  public static int [] getClassificationResultsReal234 (double mean) {
       double stdv11 = 1.0, mean11 = 0;
       double mu = mean;
       double accOpt = calcAccOpt (mu, mean11);
       double accOpt = calcAccOpt (mu, mean11);
       double stdv21 = 1.0, mean21 = mu;
       int s = 40;
       int [] correctClassification = new int [s];
       int[] group = new int[41];
         double[][] feature = new double[41][1];
       
       for (int i=0, a=1; i<=40 && a<=40; i=i+2, a=a+2) {
         group[i]=-1;
         group[a]=1;
         feature[i][0]=randomXample(stdv11, mean11);
         feature[a][0]=randomXample(stdv21, mean21);
       }
       
       for (int i = 2; i<=40; i++) {
         LinearDiscriminantAnalysis lda = new
           LinearDiscriminantAnalysis(feature, group);
         lda.ignoreAPrioris = true;
         lda.ignoreCovariance = true;
         lda.useLinearClassifier = true;
         lda.trainData(0, i);
         int r = lda.classify(feature[i]);
         boolean correct = (r == group[i]);
         correctClassification[i-2] = correct ? 1:0;
         if (i == 40) System.out.println(lda.leaveOneOutBAC());
       }
       return correctClassification;
  }
  
  public static double randomXample(double stdv1, double mean1) {
       double zufallszahlx = zufallx.nextGaussian() * stdv1 + mean1;
       return zufallszahlx;
  }
  
  public static double calcAccOpt (double mu, double mean11) {
       NormalDistribution nv = new NormalDistribution(mean11,1.0);
       double accOpt = nv.cumulativeProbability(mu/2);
       return accOpt;
  }
  
  public static double drawRandomUniformValue (double min, double max) {
       double random = new Random().nextDouble();
       double u = min + (random * (max - min));
       double uscaled = u * 1;
       double urounded = Math.round(uscaled * 10000.0)/10000.0;
       return urounded;
  }
  
}
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Appendix B: R Script
The following R script was used for Simulation Study 2.

iter <- 2000
results <- data.frame(matrix(0, iter, 9))
colnames(results) <- c("ML.b", "ML.a", "MLprior.b", "MLprior.a",
              "Larger20.b", "All.b", "LS.b", "LS.a", "Original.b")

# Maximum Likelihood Estimation
Likeli <- function(par, data) {
   b=par[1]
   a=par[2]
  
   if(b > 1 | a>7 | a < -2) {
       return(100)
   } else{
       p<-1        
       for (i in 1:length(data.class$n)) {
         q <- b-a/data$n[i]
         q <- ifelse(q>0, q, 0.00001)
         q <- ifelse(q>1, 0.99999, q)
         p <- ifelse(data$correct[i]>0,
         p*q,
         p*(1-q))
       }
       return(-log(p))
   }
}

# Bayesian estimation
Likeli.prior <- function(par, data){
  b=par[1]
  a=par[2]
  
  if(b < 0 | b > 1 | a>7 | a < -2){
       return(100)
  } else{
       p<-1
       for (i in 1:length(data.class$n)) {
         q <- b-a/data$n[i]
         q <- ifelse(q>0, q, 0.00001)
         q <- ifelse(q>1, 0.99999, q)
         p <- ifelse(data$correct[i]>0,
         p*q,
         p*(1-q))
       }
       p <- p*dbeta(b, 1.05, 1.05, ncp = 0)
       return(-log(p))
  }
}

# Simulation
for(i in 1:iter) {
  nr <- 10000 + i
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  data.class <- read.table(paste0("simulation_",nr,".txt"), header = T)
  sum.correct.larger20 <- 0
  n.larger20 <- 0
  for(j in 1:length(data.class$n)) {
       if(data.class$n[j] >= 20){
           sum.correct.larger20 <- sum.correct.larger20
                  + data.class$correct[j]
           n.larger20 <- n.larger20 + 1
       }
  }
  results[i,5] <- sum.correct.larger20/n.larger20
  results[i,6] <- sum(data.class$correct)/length(data.class$correct)
  # Least Squares etimation
  data.class$inv.n <- 1/data.class$n
  c <- sum(data.class$inv.n)/length(data.class$inv.n)
  data.class$step1 <- (data.class$correct-results[i,6])/data.class$n
  d <- sum(data.class$step1)
  data.class$step2 <- 1/(data.class$n*data.class$n)-c/data.class$n
  e <- sum(data.class$step2)
  results[i,8] <- -d/e
  results[i,7] <- results[i,6]+results[i,8]*c
  # Maximum Likelihood Estimation
  b.start <- ifelse(results[i,7]>=1,0.99999, results[i,7])
  a.start <- ifelse(results[i,8]<-2, -1.99999,
                ifelse(results[i,8]>7,6.99999,results[i,8]))
  resultLikeli <- optim(par = c(b.start, a.start), Likeli,
                           data = data.class)
  results[i,1] <- resultLikeli$par[1]
  results[i,2] <- resultLikeli$par[2]
  # Bayesian estimation
  resultLikeli.prior <- optim(par = c(b.start, a.start), Likeli.prior,
                 data = data.class)
  results[i,3] <- resultLikeli.prior$par[1]
  results[i,4] <- resultLikeli.prior$par[2]
  # True value
  results[i,9] <- data.class$true.value[1]
}

write.table(results, "ResultsRaw.txt")

# Absolute Difference
abs.diff.results <- data.frame(matrix(0, iter, 6))
colnames(abs.diff.results) <- c("Diff.ML.b", "Diff.MLprior.b",
     "Diff.Larger20.b", "Diff.All.b", "Diff.LS.b", "Original.b")

abs.diff.results$Diff.ML.b <- abs(results$ML.b - results$Original.b)
abs.diff.results$Diff.MLprior.b <- abs(results$MLprior.b - results$Original.b)
abs.diff.results$Diff.Larger20.b <- abs(results$Larger20.b
                        - results$Original.b)
abs.diff.results$Diff.All.b <- abs(results$All.b - results$Original.b)
abs.diff.results$Diff.LS.b <- abs(results$LS.b - results$Original.b)
abs.diff.results$Original.b <- results$Original.b

write.table(abs.diff.results, "ResultsAbsDifference.txt")

# Bias
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diff.results <- data.frame(matrix(0, iter, 6))
colnames(diff.results) <- c("Diff.ML.b", "Diff.MLprior.b",
     "Diff.Larger20.b", "Diff.All.b", "Diff.LS.b", "Original.b")

diff.results$Diff.ML.b <- (results$ML.b - results$Original.b)
diff.results$Diff.MLprior.b <- (results$MLprior.b - results$Original.b)
diff.results$Diff.Larger20.b <- (results$Larger20.b - results$Original.b)
diff.results$Diff.All.b <- (results$All.b - results$Original.b)
diff.results$Diff.LS.b <- (results$LS.b - results$Original.b)
diff.results$Original.b <- results$Original.b

write.table(diff.results, "ResultsDifference.txt")
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