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Abstract
Various likelihood-based methods are available for the parameter estimation of item response 
theory models (IRT), leading to comparable parameter estimates. Considering multistage testing 
(MST) designs, Glas (1988; https://doi.org/10.2307/1164950) stated that the conditional maximum 
likelihood (CML) method in its original formulation leads to severely biased parameter estimates. A 
modified CML estimation method for MST designs proposed by Zwitser and Maris (2015; https://
doi.org/10.1007/s11336-013-9369-6) finally provides asymptotically unbiased item parameter 
estimates. Steinfeld and Robitzsch (2021b; https://doi.org/10.31234/osf.io/ew27f) complemented this 
method to MST designs with probabilistic routing strategies. For both proposed modifications 
additional software solutions are required since design-specific information must be incorporated 
into the estimation process. An R package that has implemented both modifications is "tmt". In this 
article, first, the proposed solutions of the CML estimation in MST designs are illustrated, followed 
by the main part, the demonstration of the CML item parameter estimation with the R package 
"tmt". The demonstration includes the process of model specification, data simulation, and item 
parameter estimation, considering two different routing types of deterministic and probabilistic 
MST designs.
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For several years now various international large-scale assessments (ILSA) transitioned 
from paper-based to computer-based assessments (e.g., Brennan, 2006). Some ILSA there­
by also successfully applied adaptive test designs (e.g., Chang, 2015). Among these ILSAs 
are several well-known programs like the Programme for International Student Assess­
ment (PISA; OECD, 2019a, 2020), and the Programme for the International Assessment of 
Adult Competencies (PIAAC; OECD, 2019b). Adaptive test designs can be roughly split 
into computerized adaptive tests (CAT; Lord, 1971a, 1980; Owen, 1975; van der Linden 
& Glas, 2010; Wainer et al., 2000; Weiss, 1976, 1983) with test administration on item 
level and multistage tests (MST; Angoff & Huddleston, 1958; Lord, 1968, 1971b; Lord et 
al., 1968; Luecht & Nungester, 1998; Zenisky et al., 2009) where pre-specified groups of 
items are selected in the administration process. The application of adaptive testing has 
become an essential testing method (e.g., Chen et al., 2014; Dean & Martineau, 2012) used 
in the mentioned ILSAs and other areas such as psychological assessment (e.g., Kubinger 
& Holocher-Ertl, 2014), or classroom assessments (Chang, 2015). Adaptive test designs 
have in common that these are usually more efficient in terms of shorter test lengths 
while providing equal or even higher measurement precision. Furthermore, this type of 
design is associated with higher predictive validity compared to linear fixed-length tests 
(Betz & Weiss, 1974; Chang, 2015; Cronbach & Gleser, 1957; Hendrickson, 2007; Jodoin 
et al., 2006; Kim & Plake, 1993; Linn et al., 1969; Lord, 1980; Schnipke & Reese, 1997; 
Wainer et al., 2000; Weiss, 1982; Weiss & Kingsbury, 1984). In particular, the advantages 
of adaptive test designs will occur for the more extreme abilities at the lower and upper 
end of the measurement scale (Hendrickson, 2007; Lord, 1974, 1980).

As already stated, adaptive test designs can be split based on modalities of item selec­
tion methods into item-by-item designs (here referred to CAT) and those where pre-as­
sembled groups of items are administered (here referred to MST). While the item-by-item 
designs are bound to the computer due to the requirement of constantly estimation 
of person parameters for the item-selection, MST designs can also be administered in 
paper-pencil forms (see, e.g., Cronbach & Gleser, 1957; Kubinger & Holocher-Ertl, 2014; 
Linn et al., 1969). Some contributions do not separate these two designs so strictly. As 
emphasized by Chang (2015), for example, both designs could be regarded as sequential 
designs (see also Han & Guo, 2014; Kaplan & de la Torre, 2020; Luo & Wang, 2019; Zheng 
& Chang, 2014, for dynamic multistage designs).

The present work refers to the item parameter estimation with the conditional 
maximum likelihood method under the application of MST design. As stated by Glas 
(1988) the common CML approach item parameter estimates are severely biased and 
only feasible by a modification of the common CML approach proposed by Zwitser and 
Maris (2015). With the proposed modification, the application of conventional software 
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and R packages that have implemented the CML method for item parameter estimating 
is not applicable. Therefore, the package tmt was developed. Considering adaptive test 
designs, normally the step of item parameter estimation is done before the preparation of 
the test design. Referring to MST designs in ILSA, provisional item difficulties are applied 
for the test construction, the actual item parameter estimation is carried out afterward. 
In PIAAC and PISA, data were collected using an adaptive MST design to subsequently 
estimate item parameters (OECD, 2019a, 2019b).

Other situations of posterior item parameter estimation could be a rescaling of al­
ready established MST designs. This might be, e.g., that a test designed, calibrated, and 
administered in one educational entity (district, state, etc.) should be ported to a new 
entity, but requires item parameters be calibrated to the local student population.

Multistage Testing and Routing Strategies
In MST designs, subsequent modules are selected based on the test persons’ performance 
in the actual module. Modules are collections of items covering certain statistical charac­
teristics like mean item difficulties and variances of the item difficulties within modules. 
In addition, some relevant factors might also be non-statistical like comparable word 
count, item types, the balance of answer keys, and balance of the item contents represent 
specific competencies or domains to test within and across modules (Magis et al., 2017; 
see also the relation to testlets; Lord, 1980; Wainer & Kiely, 1987) might be also relevant 
factors. Each module in the routing process is referred to as a stage in the MST design. 
The combination of several processed modules among stages is called a path (see Figure 
1 for an example).

Figure 1

Example of a Multistage Design With Seven Modules, Three Stages, and Four Paths
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Tests with MST designs usually start with a module with a comparatively wide spec­
trum of item difficulties. If several modules are available the best suited module is 
selected based on additional pre-information regarding the person's ability (sometimes 
the first module is also selected randomly, e.g., to achieve particular representativeness 
expectations). Based on the performance in this routing module, additional modules are 
administered, which are best suited given the currently estimated ability. The process of 
receiving additional modules is called routing (Yan, Lewis, et al., 2014).

Defining rules for the selection of modules is a key factor in MST, as it is linked 
to efficiency and might also impact the precision of item parameter estimation (Lord, 
1980; Yan, Lewis, et al., 2014). In the following, the introduced routing strategies are cate­
gorized into deterministic and probabilistic routing. In deterministic routing all persons 
with the same performance (same raw score) in the same module mℎ

[b] of B modules 
with b = 1, …, B in the same stage of H stages with h = 1, …, H are routed to the same 
subsequent module1. Several deterministic routing strategies are conceivable. A common 
routing strategy –number-correct score (NC)– refers to the number of solved items in the 
current module. A person p = 1, …, P with ability θp and raw score xp+[b] = ∑i ∈ m[b]xpi in 
module m[b], will be routed to an easier module if xp+[b] ≤ c[b] and in the remaining cases to 
a more difficult module (see also Lord, 1980; Zenisky et al., 2009). Another deterministic 
routing strategy based on the NC score is the incorporation of the information of all 
modules processed by person p and referred to as the cumulative number-correct score 
(cNC; Kim et al., 2015; Svetina et al., 2019). Here, the number of solved items in the cur­
rent module is added to the number of solved items in the previously processed modules 
(if applicable), so that information from all processed modules is used for further routing. 
Compared to sequential routing, more information about the person's ability is gained 
in the routing process, and therefore, a more valid routing might be possible. Another 
approach of deterministic routing is incorporating the specific item difficulties instead 
of the raw score of that module. This is referred to as item response theory (IRT)-based 
routing in the literature (Yan, von Davier, et al., 2014).

Probabilistic routing, first introduced in PIAAC (Chen et al., 2014; Yamamoto & 
Khorramdel, 2018; Yamamoto et al., 2018), is characterized by additional predetermined 
probabilities which form, together with the introduced deterministic routing rule, the 
routing decision. Here, persons with the same performance x+[b] in the same module 
m[b] are only routed with probability p[b](x+[b]) to the optimal module m[b + 1] and in the 
remaining case to another easier or more difficult module. The probability of routing 
to the optimal module increases with increasing or decreasing NC score. This type of 
routing safeguards a minimal item exposure rate.

1) For the illustration used here, it is not necessary to differentiate the module assignment into stages, since no 
module was assigned to multiple stages. For these reasons and the associated improvement of readability of the 
equations, the index h for stages is dropped in the following.
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Controlling the item exposure rates for the interested population(s) is a key factor 
for the subsequent item parameter estimation. Particularly with ILSA, which is applied 
in many countries, different languages, and educational backgrounds, and designed for 
different achievement groups, the item exposure control is critical. In PIAAC e.g., routing 
probabilities were determined on expected item exposure rates for each interested subpo­
pulation by educational level and skills (Chen et al., 2014). As stated by Rutkowski et 
al. (2022), applying a probabilistic routing strategy is also promising to reduce bias and 
increase the precision of both item and person parameter estimation across highly varied 
achievement distributions across countries in ILSAs.

As stated, the selected routing strategy moderates the efficiency of the MST. By 
comparing for example different deterministic routing approaches, it was concluded by 
Svetina et al. (2019) that IRT-based routing performs best. However, the simpler to-imple­
ment NC-based routing strategy does not perform significantly worse considering the 
median of person parameter recovery rates, as Svetina et al. (2019) stated.

Parameter Estimation
Several methods for calibrating item parameters with data obtained by MST designs are 
conceivable. The item parameters are often regarded as fixed, and the persons are treated 
as either fixed or random (see, e.g., De Boeck, 2008; Holland, 1990; Lord et al., 1968; 
Molenaar, 1995b; San Martin & De Boeck, 2015, for further discussion on this topic).

In the following solely dichotomous item responses are considered utilizing the Rasch 
model (RM; Rasch, 1960) and the conditional maximum likelihood (CML; Andersen, 1972, 
1973) estimation method. Other estimation approaches are available, in particular, mar­
ginal maximum likelihood estimation (MML; Bock & Aitkin, 1981; Bock & Lieberman, 
1970; Thissen, 1982) with the assumption of normal or a non-normal trait distribution 
(Xu & von Davier, 2008) or Bayesian estimation methods (see, e.g., Draxler, 2018; Fox, 
2010; Levy & Mislevy, 2017; Rupp et al., 2004).

Estimation Approaches in MST Designs

Regarding the scaling of data obtained by an MST design, the MML estimation approach 
can be applied without any further special treatment concerning MST designs (see, e.g., 
Eggen & Verhelst, 2011; Glas, 1988; Wang et al., 2020). This is different for the CML 
estimation method, which is only feasible by modifying the common CML approach as 
proposed by Zwitser and Maris (2015). Supporters of the CML estimation approach might 
highlight its superiority because this type of item parameter estimation is independent 
of assumptions of the trait distribution (Eggen & Verhelst, 2011; Glas, 1988; Kubinger 
et al., 2012; Zwitser & Maris, 2015), since no distribution assumption for the person 
parameters is required. It is also often emphasized that the CML estimation comes 
close to the idea of person-free assessment (Molenaar, 1995a) required for postulating 
specific objectivity (Rasch, 1967, 1977). Steinfeld and Robitzsch (2021a) studied different 
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estimation approaches for MST, considering different MST designs and trait distributions 
in a simulation study. Their results indicated that in cases of substantial violation of the 
normal distribution, the MML approach assuming that traits are normally distributed 
led to relatively large RMSE compared to the modified CML estimation method (see 
also Casabianca, 2011; Casabianca & Lewis, 2015; Holland & Thayer, 2000; Xu & von 
Davier, 2008). From a more theoretical perspective, however, it should be noted that as 
the number of items increases (I → ∞), the theoretically specified distribution for θ is 
meaningless as an empirical prior. For very long tests the specified distribution has there­
fore no meaningful influence (cf. also Clarke & Junker, 1991; Cliff & Donoghue, 1992; 
Douglas, 1997; Douglas, 2001; Ellis & Junker, 1997; Junker, 1993; Kiefer & Wolfowitz, 
1956; Peress, 2012; Strout, 1990).

Conditional Maximum Likelihood Estimation Method

As stated, in the following dichotomous item responses and the RM are considered. Let 
Xpi denotes an independent distributed random response variable with the realization 
xpi = 1 if person p solves item i and xpi = 0 otherwise. The probability of solving item 
i = 1, …, I with difficulty βi by person p = 1, …, P with ability θp can be expressed as

P(Xpi = xpi ∣ θp, βi) =
exp[xpi(θp − βi)]
1 + exp(θp − βi) ,

(1)

with xpi = 1. The person-specific likelihood L(xp ∣ θp, β) with responses 
xp = (xp1, xp2, …, xpI) of person p with ability θp, item difficulties β and assumed local 
independence is proportional to

L(xp ∣ θp, β) =
exp(xp+θp − ∑i = 1

I xpiβi)
∏i = 1

I [1 + exp(θp − βi)]
(2)

where xp+ = ∑i = 1
I xpi denotes the raw score of person p. In the following, we will omit 

the person index p in xp+. As stated, one approach estimating the item parameters is 
the CML estimation method. Applying the CML method, conditional likelihoods are used 
for the estimation. By conditioning on the raw scores of the persons (person marginal 
sums), which is also referred to as minimal sufficient statistic for person parameter θp

(Andersen, 1972, 1973; Fischer, 1974; Rasch, 1960), the person parameter θ is canceled. 
For a more detailed depiction of the CML method see for instance Fischer (2007). The 
likelihood for the response matrix X in the CML case with si = ∑p = 1

P xpi as item score of 
item i, nx+ as the number of persons with raw score ∑ixi = x+ results in Equation 6. Here 
the crucial part of the estimation is the calculation of the elementary symmetric function 
(ESF) γ(x+, β) of order x+ and β1, β2, …, βI .
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L(X ∣ θ, β) =
exp(∑p = 1

P xp+θp − ∑p = 1
P ∑i = 1

I xpiβi)
∏p = 1

P ∏i = 1
I [1 + exp(θp − βi)]

=
exp(∑p = 1

P xp+θp − ∑i = 1
I siβi)

∏p = 1
P ∏i = 1

I [1 + exp(θp − βi)]

(3)

L(x+ ∣ β) =
exp(∑p = 1

P xp+θp)∏p = 1
P ∑xpi

xp+exp( − ∑i = 1
I xpiβi)

∏p = 1
P ∏i = 1

I [1 + exp(θp − βi)]
(4)

L(X ∣ x+, β) =
L(X ∣ θ, β)
L(x+ ∣ β)

= exp( − ∑i = 1
I siβi)

∏p = 1
P ∑xpi

xp+exp( − ∑i = 1
I xpiβi)

(5)

LCML(X ∣ x+, β) ∝
exp( − ∑i = 1

I siβi)
∏x+ = 0

I γ(x+, β)nx+
(6)

In total there are I
x+  different possibilities for obtaining the score x+. Summing over 

these different possibilities I
x+  is described by the equation

γ(x+, β) = ∑{xi ∣ ∑xi = x+}exp( − ∑i = 1
I xiβi) . (7)

The calculation of the ESF can become a bottleneck in the estimation process, particular­
ly with larger amounts of items. Therefore, several methods to compute the ESF have 
been proposed, which differ mainly in accuracy and speed (see, e.g., Formann, 1986; 
Liou, 1994; Verhelst et al., 1984). Molenaar (1995b) stated that the resulting estimates of 
β̂ by maximizing Equation (6) are consistent, asymptotically efficient, and asymptotically 
normally distributed.

CML Estimation in MST Designs
As illustrated in the Introduction, as well as in the Multistage Testing and Routing 
Strategies section, in MST designs, persons obtain additional modules based on their 
performances and pre-specified routing rules. Persons with higher scores in the same 
modules are usually routed to more difficult modules, and persons with lower scores 
usually to easier modules.

The application of deterministic routing rules causes that not all raw scores are 
possible in each path of the design, as would be the case in a linear test administration. 
Suppose the routing from module m[1] to module m[2] with six items in each module 
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based on the deterministic routing rule, that the raw score in module m[1] is greater than 
three. This results in the fact that only raw scores greater than three to a maximum 
of twelve can be observed in the path m[1, 2], but not the raw scores zero, one, two, or 
three. This deviates from expectations in the calculation of the common ESF. Therefore, 
the common CML item parameter estimation leads to severely biased item parameter 
estimates (Glas, 1988; see also Eggen & Verhelst, 2011; Kubinger et al., 2012).

CML Estimation in Deterministic MST Designs

Zwitser and Maris (2015) tackled the issue of CML estimation for deterministic routing 
due to considering the respective MST design in the CML estimation process. They pro­
posed a modification of the symmetric function to consider only those raw scores which 
can occur due to the specific MST design. They demonstrated that the resulting item 
parameter estimates are consistent with this modification. Referring to their solution, a 
person p with raw score xp+ is routed in the deterministic case from module m[b] to the 
next module based on a cut score c[b]. Therefore, the probability of score x+[1, 2] in the two 
modules m[1, 2] with a given ability θ and the condition that the raw score in the first 
module m[1] is not greater than the cut score c[1] and P(X+

[1] ≤ c[1]), can be expressed as

Pm[1, 2](x[1, 2] ∣ θ, X+
[1] ≤ c[1]) = Pm[1, 2](x[1, 2] ∣ θ)

Pm[1, 2](X+
[1] ≤ c[1] ∣ θ)

. (8)

Note that Pm[1, 2](X+
[1] ≤ c[1] | x[1, 2], θ) equals one since the condition implies the inequality. 

The distribution of X[1] and X[2] conditioned on a raw score of x+[1, 2], can be expressed 
with the common CML approach as follows

Pm[1, 2](x[1, 2] ∣ x+[1, 2]) =
∏i = 1

I [1] exp( − xi[1]βi[1])∏j = 1
I [2] exp( − xj[2]βj[2])

∑j = 0
I [1, 2] γj(m[1])γx+[1, 2] − j(m[2])

  . (9)

The probability of X+
[1] lower or equal of cut score c[1] conditioned on x+[1, 2] is

Pm[1, 2](X+
[1] ≤ c[1] ∣ x+[1, 2]) =

∑j = 0
c[1] γj(m[1])γx+[1, 2] − j(m[2])

∑j = 0
I [1, 2] γj(m[1])γx+[1, 2] − j(m[2])

  . (10)

The probability for a raw score of x[1, 2] conditioned on score x+[1, 2] reached in both 
modules m[1, 2] under the condition that the raw score x+[1] in module m[1] smaller or equal 
to the previously defined cut score c[1], can be described with the two Equations (9) and 
(10) as follows

Estimating Item Parameters in MST with tmt 8

Quantitative and Computational Methods in Behavioral Sciences
2023, Article e10087, https://doi.org/10.5964/qcmb.10087

https://www.psychopen.eu/


Pm[1, 2](x[1, 2] ∣ x+[1, 2], X+
[1] ≤ c[1]) = Pm[1, 2](x[1, 2], X+

[1] ≤ c[1] ∣ x+[1, 2])
Pm[1, 2](X+

[1] ≤ c[1] ∣ x+[1, 2])

= Pm[1, 2](x[1, 2] ∣ x+[1, 2])
Pm[1, 2](X+

[1] ≤ c[1] ∣ x+[1, 2])

=
∏i = 1

I [1] exp( − xi[1]βi[1])∏j = 1
I [2] exp( − xj[2]βj[2])

∑j = 0
c[1] γj(m[1])γx+[1, 2] − j(m[2])

  .

(11)

A more detailed description of this approach can be found in Zwitser and Maris (2015), 
and in Steinfeld and Robitzsch (2021a).

CML Estimation in Probabilistic MST Designs

Based on the modification for deterministic routing outlined in the CML Estimation in 
Deterministic MST Designs section, the modification of the CML method in probabilistic 
MST designs (Steinfeld & Robitzsch, 2021b) can be described as follows. Let C[1] be the 
event that the next module with score X+

[1] is chosen. As stated, instead of a deterministic 
cut score a probability vector p[b](x+[b]) is applied for the routing process. The probability 
Pm[1, 2](X+

[1] ∈ C[1] ∣ x+[1, 2]), that person p with score X+
[1] in module m[1] is routed to module 

m[2] only with probability p[1](x+[1]) can be expressed as follows

Pm[1, 2](X+
[1] ∈ C[1] ∣ x+[1, 2]) =

∑j = 0
I [1, 2] p[1](j)γj(m[1])γx+[1, 2] − j(m[2])
∑j = 0

I [1, 2] γj(m[1])γx+[1, 2] − j(m[2])
  . (12)

The probability Pm[1, 2](x[1, 2] ∣ x+[1, 2], X+
[1] ∈ C[1]) can be described by Equation 9 and Equa­

tion 12 as follows

Pm[1, 2](x[1, 2] ∣ x+[1, 2], X+
[1] ∈ C[1]) = Pm[1, 2](x[1, 2], X+

[1] ∈ C[1] ∣ x+[1, 2])
Pm[1, 2](X+

[1] ∈ C[1] ∣ x+[1, 2])

= Pm[1, 2](x[1, 2] ∣ x+[1, 2])
Pm[1, 2](X+

[1] ∈ C[1] ∣ x+[1, 2])

=
∏i = 1

I [1] exp( − xi[1]βi[1])∏j = 1
I [2] exp( − xj[2]βj[2])

∑j = 0
I [1, 2] p[1](j)γj(m[1])γx+[1, 2] − j(m[2])

  .

(13)

In a probabilistic routing approach, however, there is no deterministic restriction on 
possible raw scores within each path of the MST design. Therefore, all raw scores with 
their respective probabilities – denoted in Equation 13 by p[1](j) – are considered in the 
calculation of the ESF.
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Implementation in R: The Package tmt
In the following, the package tmt will be introduced in detail. Here the modified 
CML approach as described in the CML Estimation in MST Designs section has been 
implemented. The package is developed for R (R Core Team, 2021), a language and 
environment for statistical computing, and a common software tool for psychometric 
and statistical analysis. The software R and the available packages are all published as 
open-source. Regarding psychometrics and in particular IRT, several R packages with a 
large variety of estimation methods for the estimation of item parameters are published 
(see, e.g., Baker & Kim, 2017; Bürkner, 2021; Chalmers, 2012; Choi & Asilkalkan, 2019; De 
Boeck et al., 2011; Fox, 2007; Hohensinn, 2018; Johnson, 2007; Mair & Hatzinger, 2007b; 
Paek & Cole, 2019; Rizopoulos, 2006).

As stated in the Introduction next to the CML parameter estimation method, the 
MML approach is often applied. Here several packages are available, a selection of those 
are, e.g., the package ltm (Rizopoulos, 2006) with the function ltm::rasch(), the 
package sirt (Robitzsch, 2021) with the function sirt::rasch.mml2(), the pack­
age TAM (Robitzsch et al., 2021) with the function TAM::tam.mml() or the package 
mirt (Chalmers, 2012) with the function mirt::mirt(). All these packages offer a 
variety of models which can be estimated. The function sirt::rasch.mirtlc() 
in the sirt package can be applied to estimate log-linear smoothing. Here the model 
type (e.g. modeltype = ’MLC1’) and the trait distribution distribution.trait 
= ’smooth4’ is passed as additional arguments.

This contribution focuses on the modified CML parameter estimation. For the com­
mon CML estimation, there are many R packages available like the well-known eRm 
Package with the main function eRm::RM() (Mair et al., 2021), the package psycho-
tools with the function psychotools::raschmodel() (Zeileis et al., 2021), the 
package dexter with the function dexter::fit_enorm() (Maris et al., 2022), the 
package immer with the function immer::immer_cml() (Robitzsch & Steinfeld, 
2018) and the package tmt with the function tmt::tmt_rm() (Steinfeld & Robitzsch, 
2022), to name a few representatives. All packages have in common that they allow a 
user-friendly infrastructure but differ in speed and the availability of additional analysis 
options. Choi and Asilkalkan (2019) presented a comparative overview of some IRT 
packages (for application of different packages, see, e.g., Debelak et al., 2022).

Regarding the item parameter estimation with data obtained by an MST design, two 
R packages tmt (Steinfeld & Robitzsch, 2022) and dexterMST (Bechger et al., 2022) are 
currently available for deterministic routing utilizing the modified CML estimation meth­
od, while the probabilistic routing is currently only available in the package tmt. In the 
following, the main functions of the package tmt and its utilization are illustrated. The 
most recent version of the tmt package can be found in the Supplementary Materials.

First, the constructed model syntax for the specification of the MST design will be in­
troduced. Second, the main package functions for the parameter estimation are outlined 
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following some illustrations based on simulated data for different MST designs. A major 
motivation for the development process of tmt was keeping the parameter estimation as 
simple as possible for the user next to a large functionality of the package (the package 
is constantly being enhanced). Another aspect was the speed of the estimation process, 
even for larger amounts of items. For the first motivation, a model syntax was developed 
for ease of use, which will be presented below in detail. In terms of speed, the essential 
parts of the estimation process (essentially the calculation of the symmetric function 
introduced in the Parameter Estimation section were written in C++ utilizing the R 
package Rcpp (Eddelbuettel & Balamuta, 2018).

MST Model Specification
As stated in the CML Estimation in MST Designs section, to apply the CML estimation 
method for MST designs, it is necessary to consider the restriction of the raw scores in 
each path. For this purpose, we developed a syntax to easily translate the applied MST 
design for data collection for the item parameter estimation. The language used in the 
model syntax is listed in Table 1. A short MST design to illustrate the translation from 
the MST design can be found in Listing 1.

Table 1

Definition of the Syntax Used in the Package for Creating an MST Design

Formula Type Syntax Example

module =∼ m1 =∼ c(i1, i2, i3, i4, i5) or m1 =∼ paste0(’i’,1:5)
path := p1 := m2(min, max) or p1 := m2(r1)
routing rule = r1 = c(min, max) or c(probabilities)
sequential routing + p1 := m2(min, max) + m1(min, max)
cumulative routing ++ p1 := m2(min, max) ++ m1(min, max)
pre-condition == data$variable

For the specification of modules, the syntax =∼ is used with the name of each module on 
the left-hand side (in Listing 1 indicated with ‘m1’) and an R-vector with the containing 
items in the module on the right-hand side. As indicated in Table 1, there are several 
possibilities to specify the R-vector for convenience. Next, the paths and the applied 
routing rules must be specified. For the path (indicated here as ‘p1’ and ‘p2’), the syntax 
‘:=’ is used. Here, the name of the respective path is put on the left-hand side, and the 
module constitutes the path on the right-hand side. Specifying the path also requires 
the specification of the routing rules and the type of routing (sequential or cumulative). 
For deterministic routing, the minimum and maximum raw scores per module must be 
indicated in parentheses after each module. The modules are then connected to a path 
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with ‘+’ for sequential routing and ‘++’ in the event of cumulative routing (see again 
Table 1). The MST design used here is a simplified example for illustration. With the 
package tmt, it is also possible to estimate item parameters of more complex MST 
designs. Conceivable routing into more than one module, a path consists of several 
modules or routing from different paths into the same subsequent module. A slightly 
extended example of a more complex design with 40 items is shown in Listing 2. Here, in 
the second Stage three deterministic routing options to the third Stage are available.

Listing 1

Example of the Used Model Syntax for an MST Design With Three Modules and Two Stages With Sequential 
Deterministic Routing

 1 # definition of the MST design in tmt:
 2 mstdesign ← "
 3  m1 =~ c(i01,i02,i03,i04,i05)
 4  m2 =~ c(i06,i07,i08,i09,i10)
 5  m3 =~ c(i11,i12,i13,i14,i15)
 6     
 7  p1 := m2(0,2) + m1
 8  p2 := m2(3,5) + m3
 9 "

Listing 2

Example of a Slightly More Complex MST Design With Sequential Deterministic Routing

 1 # definition of the MST design in tmt:
 2 mstdesign ← "
 3 m4 =~ paste0('i', 1:5)
 4 m2 =~ paste0('i', 6:10)
 5 m5 =~ paste0('i',11:15)
 6 m1 =~ paste0('i',16:25)
 7 m6 =~ paste0('i',26:30)
 8 m3 =~ paste0('i',31:35)
 9 m7 =~ paste0('i',36:40)
10     
11 # define path
12 p1 :=  m1(0, 5) + m2(0, 1) + m4
13 p2 :=  m1(0, 5) + m2(2, 3) + m5
14 p3 :=  m1(0, 5) + m2(4, 5) + m6
15 p4 :=  m1(6,10) + m3(0, 1) + m5
16 p5 :=  m1(6,10) + m3(2, 3) + m6
17 p6 :=  m1(6,10) + m3(4, 5) + m7
18 "
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For sequential probabilistic MST designs, the deterministic routing rules must be re­
placed by the respective probabilities. These probabilities are specified for each possible 
raw score in the previous module, as illustrated in the following example in Listing 3, 
lines seven and eight (e.g. in ‘r1’, 0.9 is the probability applied for raw score 0; 0.76 for 
raw score 1; …).

Listing 3

Example of the Used Model Syntax for an MST Design With Three Modules and Two Stages With Sequential 
Probabilistic Routing

 1 # definition of the MST design in tmt:
 2 mstdesign ← "
 3  m1 =~ c(i01,i02,i03,i04,i05)
 4  m2 =~ c(i06,i07,i08,i09,i10)
 5  m3 =~ c(i11,i12,i13,i14,i15)
 6     
 7  r1 = c(0.9,0.76,0.62,0.48,0.34,0.2)
 8  r2 = c(0.1,0.24,0.38,0.52,0.66,0.8)
 9     
10  p1 := m2(r1) + m1
11  p2 := m2(r2) + m3
12 "

Data Generation
The estimation function tmt::tmt_rm() expects either a P × I matrix with P persons 
and I items of the R-data-types matrix or data.frame. It is required here that the names 
of the columns follow the item names as specified in the respective multistage model. 
If required, it is also possible to add columns with additional information regarding the 
ability of persons, here referred to as pre-conditions. Some MST designs apply pre-tests, 
and questionnaires or incorporate other information for the routing process, which 
might be helpful for a valid selection of a suited routing module. This pre-information 
is only used for the routing but not for the parameter estimation. Together with the 
number-correct score of the routing module and the score of the pre-information a 
cumulative number-correct score is calculated, and additional modules are selected.

Parameter Estimation
In tmt, the item parameter estimation of data obtained by an MST design is straightfor­
ward. After the specification of the MST designs described in the MST Model Specifica­
tion section, the data are prepared according to the description in the Data Generation 
section. Both the data and the translated MST design were handed over to the estimation 
function tmt::tmt_rm(). For the estimation, the unconstrained and box-constructed 
optimization using port routines is used (nlminb from the stats package in R; Fox et 
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al., 1978; Gay, 1990; R Core Team, 2021), as in our experience, this optimization seems 
to find the minimum while other optimization routines (here stats::optim()) does 
not. Singh and Dixit (2016) stated in their results that this algorithm is the method of 
choice for accuracy. They also suggest applying bounds for the parameters if available, 
to speed up the estimation process. The algorithm by Broyden-Fletcher-Goldfarb-Shanno 
(BFGS Fletcher, 1970) from the optimizer optim (from the stats package) can be 
alternatively applied. This is a quasi-Newton optimization method that approximates the 
Hessian matrix (by changing the value for the variable ’optimization’ in the function 
tmt::tmt_rm() to tmt::tmt_rm(optimization = ’optim’)).

Application of the tmt Package in a Nutshell
In the following, the application of the package tmt is illustrated for sequential and 
cumulative deterministic as well as probabilistic MST designs. For the demonstration, an 
MST with seven modules, four paths, and three stages is applied (see Figure 1). Each 
module contains ten items with different item difficulties. The routing module is module 
‘m1’. First, an MST design with sequential deterministic routing is considered in the 
Illustration of Parameter Estimation in Sequential Deterministic MST Designs section, 
followed by a demonstration of cumulative deterministic routing in the Illustration of 
Parameter Estimation in Cumulative Deterministic MST Designs section. The same struc­
ture of the MST design used for the demonstration of deterministic routing is applied for 
probabilistic routing illustrated in the Illustration of Parameter Estimation in Sequential 
Probabilistic MST Designs and Illustration of Parameter Estimation in Cumulative Proba­
bilistic MST Designs sections.

Illustration of Parameter Estimation in Sequential Deterministic 
MST Designs
For the demonstration of the package first both item (beta) and person (theta) parameters 
are generated. This step is shown in Listing 4.

Listing 4

Generating Item and Person Parameters for the Illustration

 1 library(tmt) # loading the package
 2     
 3 # generate item parameters with corresponding names to the MST design above
 4 beta ← seq(-2, 2, length.out = 70)
 5 names(beta) ← paste0('i', seq_along(beta))
 6     
 7 # generate person parameter
 8 set.seed(6542) # the seed set only for illustration purposes
 9 theta ← stats::rnorm(25000, 0, 1)
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Considering the model syntax introduced in Table 1, the deterministic MST design 
with sequential deterministic routing is indicated in tmt by ‘+’. First, the modules are 
specified, followed by the paths built by modules. The respective cut score is specified in 
parentheses after each module in each path as illustrated in Listing 5.

Listing 5

Specification of an MST Design With Sequential Deterministic Routing in tmt

 1 # specification of MST design for tmt with deterministic sequential routing
 2 mstdesign_m01 ← "
 3  m4 =~ paste0('i',1:10)
 4  m2 =~ paste0('i',11:20)
 5  m5 =~ paste0('i',21:30)
 6  m1 =~ paste0('i',31:40)
 7  m6 =~ paste0('i',41:50)
 8  m3 =~ paste0('i',51:60)
 9  m7 =~ paste0('i',61:70)
10    
11 # define path
12 p1 :=  m1(0, 5) + m2(0, 5) + m4
13 p2 :=  m1(0, 5) + m2(6,10) + m5
14 p3 :=  m1(6,10) + m3(0, 5) + m6
15 p4 :=  m1(6,10) + m3(6,10) + m7
16 "

In this example, the item parameters are generated in ascending difficulty (line 4 in 
Listing 4). The assignment of the items to the modules in Listing 5 is then defined in 
such a way that the entry module ‘m1’ contains difficulties in the middle range. The 
difficulties in the modules ‘m5’, ‘m2’, and ‘m4’ decrease, and in ‘m6’, ‘m3’, and ‘m7’ 
increase.

To generate data, the specific MST designs, item parameters, and person parameters 
are handed over to the function tmt::tmt_sim(). The argument ‘seed’ is only set for 
demonstration purposes as illustrated in Listing 6.

Listing 6

Demonstration of the Simulation Function in tmt to Generate Data, Based on the Specified MST Design From 
Listing 5.

 1 # generate data in tmt
 2 dat_m01 ← tmt::tmt_sim(mstdesign = mstdesign_m01,
 3        items = beta, persons = theta, seed = 6542)
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For the item parameter estimation in tmt, the generated data are passed to the function 
tmt::tmt_rm(). If requested some graphical illustrations can be applied for item 
inspections with tmt::tmt_gmc() (see Listing 7). This type of plot is applied for 
(intuitive) differential item functioning (DIF; see also Holland & Wainer, 1993; Maris & 
Bechger, 2007; Millsap, 2011; Osterlind & Everson, 2009) inspection as proposed by Rasch 
(1960) to investigate measurement invariance (see also Debelak et al., 2022; Fischer & 
Molenaar, 1995; Mair & Hatzinger, 2007a, 2007b; Wright & Stone, 1999).2

Figure 2

Two Illustrations of the Graphical Model Check for Intuitive Differential Item Functioning

Note. Graphical model check on the left (Figure 2a) is without default values, while that on the right (Figure 2b) 
is with the specification of additional options to emphasize items.

Comparing the estimation results above with the results of the package dexterMST 
shows that both packages lead to very close item parameter estimates (the underlying 
R scripts for the comparison can be found in the Supplementary Materials (Steinfeld 
& Robitzsch, 2023)). The mean absolute error (MAE) of the estimated item parameters 
was MAE = 3.248 × 10−5. Further simulations considering the parameter recovery can be 
found in Steinfeld and Robitzsch (2021a). Here, in addition to different MST designs, 
different ability distributions were considered. Across all conditions and sample sizes, the 
package tmt leads to asymptotically unbiased item parameter estimates.

2) If the simulation function of tmt is applied, this step can be shortened by passing the generated object from 
the function tmt::tmt_sim() to the function tmt::tmt_rm(), in the example from Listings 7 it would be 
sufficient to write m01_tmt <- tmt::tmt_rm(dat_m01).
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Illustration of Parameter Estimation in Cumulative Deterministic 
MST Designs
The syntax for cumulative deterministic routing is very similar to the sequential deter­
ministic routing introduced in the Illustration of Parameter Estimation in Sequential De­
terministic MST Designs section. Therefore, the description in the following is shortened 

Listing 7

Demonstration of Item Parameter Estimation in tmt (Only the results of the first six items are presented)

 1 # store the generated data
 2 data_m01 ← dat_m01$data
 3      
 4 # estimate item parameter in tmt
 5      
 6 m01_tmt ← tmt::tmt_rm(dat = data_m01, mstdesign = mstdesign_m01)
 7      
 8 # results of the item parameter estimation
 9 summary(m01_tmt)
10 ## tmt::tmt_rm(dat = data_m01, mstdesign = mstdesign_m01)
11      
12 ## Results of Rasch model (mst) estimation:
13      
14 ## Difficulty parameters:
15 ##               est.b_i1    est.b_i2   est.b_i3    est.b_i4    est.b_i5    est.b_i6
16 ## Estimate   -1.97867038 -1.93760925 -1.8783399 -1.81897861 -1.77858137 -1.69975932
17 ## Std. Error  0.03276159  0.03258628  0.0323513  0.03213709  0.03200329  0.03176985
18      
19 
20 # application of the Likelihood ratio test function
21 m01_tmt_lr ← tmt::tmt_lrtest(m01_tmt)
22      
23 # plot results (see Figure 2a)
24 tmt::tmt_gmc(m01_tmt_lr)
25      
26 # illustration of additional options for the plot, like emphasize of specific items 
     with e.g. common item formats (see Figure 2b)
27 info ← rep(c('group_a','group_b'),each = 35)
28 names(info) ← paste0('i', seq_along(beta))
29     
30 drop ← c('i1','i18','i20','i10') # option to drop items
31      
32 tmt::tmt_gmc(object = m01_tmt_lr,
33  ellipse = TRUE,
34  info = info,
35  drop = drop,
36  title = 'graphical model check',
37  alpha = 0.05,
38  legendtitle = 'split criteria')
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to the parts that differ. For the following examples, the parameters generated in Listing 4 
are used. For the specification of MST designs with cumulative deterministic routing, the 
syntax ‘++’ is used in tmt. After each module, the minimum and maximum cumulative 
raw score for the routing threshold is specified in parentheses, as illustrated in Listing 8.

Listing 8

Specification of an MST Design With Cumulative Deterministic Routing

 1 # specification of MST design for tmt with cumulative deterministic routing
 2 mstdesign_m02 ← "
 3  m4 =~ paste0('i',1:10)
 4  m2 =~ paste0('i',11:20)
 5  m5 =~ paste0('i',21:30)
 6  m1 =~ paste0('i',31:40)
 7  m6 =~ paste0('i',41:50)
 8  m3 =~ paste0('i',51:60)
 9  m7 =~ paste0('i',61:70)
10    
11  # define path
12  p1 := m1(0, 5) ++ m2( 0,10) ++ m4
13  p2 := m1(0, 5) ++ m2(11,15) ++ m5
14  p3 := m1(6,10) ++ m3( 6,15) ++ m6
15  p4 := m1(6,10) ++ m3(16,20) ++ m7
16 "

Data can again be generated using the available function tmt::tmt_sim() in the 
package tmt (see Listing 9).

Listing 9

Demonstration of the Simulation Function in tmt to Generate Data Based on the Specified MST Design From 
Listing 8

 1 # generate data in tmt
 2 dat_m02 ← tmt::tmt_sim(mstdesign = mstdesign_m02,
 3        items = beta, persons = theta, seed = 3657)
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Listing 10

Demonstration of Item Parameter Estimation in tmt (Only the results of the first six items are presented)

 1 #  store the generated data
 2 data_m02 ← dat_m02$data
 3   
 4 # estimate item parameter in tmt
 5 m02_tmt ← tmt::tmt_rm(dat = data_m02, mstdesign = mstdesign_m02)
 6   
 7 # results
 8 summary(m02_tmt)
 9 ## Call: tmt::tmt_rm(dat = dat_m02)
10   
11 ## Results of Rasch model (mst) estimation:
12   
13 ## Difficulty parameters:
14 ##               est.b_i1    est.b_i2    est.b_i3    est.b_i4    est.b_i5    est.b_i6
15 ## Estimate   -1.96365690 -1.91027776 -1.85010094 -1.82170568 -1.73675870 -1.65458688
16 ## Std. Error  0.02690224  0.02667968  0.02644528  0.02634067  0.02605033  0.02580121

The remaining parts of the item parameter estimation do not differ from that demonstra­
ted in the Illustration of Parameter Estimation in Sequential Deterministic MST Designs 
section for sequential deterministic routing. The estimated item parameters from tmt 
and dexterMST are almost the same (see Listing 10). The MAE of the estimated item 
parameters was MAE = 0.0037.

Illustration of Parameter Estimation in Sequential Probabilistic 
MST Designs
The procedure for estimating item parameters in probabilistic MST designs is comparable 
to those of deterministic designs. For the demonstration, the generated parameters as 
illustrated in Listing 4 are used. As stated in the demonstration of deterministic MST 
designs, first the specific MST model must be specified, illustrated in Listing 11. Again, 
considering the model syntax introduced in Table 1, the only difference in the formula­
tion of deterministic MST designs is that the probabilities for every achievable raw score 
must be specified as indicated in the following illustration (‘r1’ and ‘r2’), replacing the 
previously defined deterministic routing rules in each path.
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Listing 11

Specification of an MST Design With Sequential Probabilistic Routing

 1 # specification of MST design for tmt with sequential probabilistic routing
 2 mstdesign_m03 ← "
 3  m4 =~ paste0('i',1:10)
 4  m2 =~ paste0('i',11:20)
 5  m5 =~ paste0('i',21:30)
 6  m1 =~ paste0('i',31:40)
 7  m6 =~ paste0('i',41:50)
 8  m3 =~ paste0('i',51:60)
 9  m7 =~ paste0('i',61:70)
10       
11       
12  # Specification of the probability for each raw score for the routing process. In 
     this example persons with a raw score of 0 in module `m1' are routed to m2 with 
     the probability 0.9 (r1) and with the probability of 0.1 to m2 (r2)
13   r1 = c(0.9,0.83,0.76,0.69,0.62,0.55,0.48,0.41,0.34,0.27,0.2)
14   r2 = c(0.1,0.17,0.24,0.31,0.38,0.45,0.52,0.59,0.66,0.73,0.8)
15       
16  # definition of four paths
17  p1 :=  m1(r1) + m2(r1) + m4
18  p2 :=  m1(r1) + m2(r2) + m5
19  p3 :=  m1(r2) + m3(r1) + m6
20  p4 :=  m1(r2) + m3(r2) + m7
21 "

As before, data can be generated using the available function tmt::tmt_sim() (see 
Listing 12).

Listing 12

Demonstration of the Simulation Function in tmt to Generate Data Based on the Specified MST Design From 
Listing 11

 1 # generate data in tmt
 2 # load Package tmt
 3 library(tmt)
 4     
 5 # generate item parameters with corresponding names to the MST design above
 6 beta ← seq(-2, 2, length.out = 70)
 7 names(beta) ← paste0('i', seq_along(beta))
 8     
 9 # generate person parameter
10 set.seed(6542) # the seed sed only for illustration purposes
11 theta ← stats::rnorm(25000, 0, 1)
12     
13 dat_m03 ← tmt::tmt_sim(mstdesign = mstdesign_m03,
14        items = beta, persons = theta, seed = 6542)
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As illustrated in Listing 13, the item parameters can be estimated with the application of 
the function tmt::tmt_rm().3

Listing 13

Demonstration of Item Parameter Estimation in tmt (Only the results of the first six items are presented)

 1 # store the generated data
 2 data_m03 ← dat_m03$data
 3      
 4 # estimate item parameter in tmt
 5 m03_tmt ← tmt::tmt_rm(dat = data_m03, mstdesign = mstdesign_m03)
 6      
 7 # results of the item parameter estimation
 8 summary(m03_tmt)
 9      
10 ## Call: tmt::tmt_rm(dat = data_m03, mstdesign = mstdesign_m03)
11      
12 ## Results of Rasch model (mst) estimation:
13      
14 ## Difficulty parameters:
15 ##               est.b_i1    est.b_i2    est.b_i3    est.b_i4    est.b_i5    est.b_i6
16 ## Estimate   -2.08149306 -1.93868259 -1.89807931 -1.89807931 -1.78190613 -1.75924600
17 ## Std. Error  0.03390043  0.03294204  0.03269118  0.03269118  0.03202441  0.03190298

Illustration of Parameter Estimation in Cumulative Probabilistic 
MST Designs
As shown in the Illustration of Parameter Estimation in Cumulative Deterministic MST 
Designs section for deterministic routing, to indicate routing with cumulative scores, 
the operator ‘++’ is used for the specification of the paths in the MST design. As with 
sequential probabilistic routing, it is necessary to specify the probabilities for the routing 
with cumulative scores for each possible raw score. However, not only for each module 
as in the sequential case but for all possible raw scores, which can be reached with the 
actual and previous modules in each path (see Listing 14).

3) It is not necessary to pass the MST design (‘mstdesign_m03’) as shown in Listing 13 if the data are generated with 
tmt::tmt_sim(), as the design is part of the returned object from that function.
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Listing 14

Specification of an MST Design With Cumulative Probabilistic Routing

 1 # specification of MST design for tmt with cumulative probabilistic routing
 2 mstdesign_m04 ← "
 3  m4 =~ paste0('i',1:10)
 4  m2 =~ paste0('i',11:20)
 5  m5 =~ paste0('i',21:30)
 6  m1 =~ paste0('i',31:40)
 7  m6 =~ paste0('i',41:50)
 8  m3 =~ paste0('i',51:60)
 9  m7 =~ paste0('i',61:70)
10      
11  # define routing criteria
12  r1 = c(0.9,0.83,0.76,0.69,0.62,0.55,0.48,0.41,0.34,0.27,0.2)
13  r2 = c(0.1,0.17,0.24,0.31,0.38,0.45,0.52,0.59,0.66,0.73,0.8)
14  r3 = c(0.9,0.83,0.76,0.69,0.62,0.55,0.48,0.41,0.34,0.27,0.2,0.9,0.83,0.76,0.69,0.62
     ,0.55,0.48,0.41,0.34,0.27)
15  r4 = c(0.1,0.17,0.24,0.31,0.38,0.45,0.52,0.59,0.66,0.73,0.8,0.1,0.17,0.24,0.31,0.38
     ,0.45,0.52,0.59,0.66,0.73)
16      
17  # define path
18  p1 :=  m1(r1) ++ m2(r3) ++ m4
19  p2 :=  m1(r1) ++ m2(r4) ++ m5
20  p3 :=  m1(r2) ++ m3(r3) ++ m6
21  p4 :=  m1(r2) ++ m3(r4) ++ m7
22 "

As stated in the previous Sections, data can be generated using the available function for 
date generation tmt::tmt_sim() (see Listing 15).

Listing 15

Demonstration of the Simulation Function in tmt to Generate Data Based on the Specified MST Design From 
Listing 14

 1 # generate data in tmt
 2 # load Package tmt
 3 library(tmt)
 4      
 5 # generate item parameters with corresponding names to the MST design above
 6 beta ← seq(-2, 2, length.out = 70)
 7 names(beta) ← paste0('i', seq_along(beta))
 8      
 9 # generate person parameter
10 set.seed(6542) # the seed sed only for illustration purposes
11 theta ← stats::rnorm(25000, 0, 1)
12      
13 dat_m04 ← tmt::tmt_sim(mstdesign = mstdesign_m04,
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14        items = beta, persons = theta, seed = 6542)

With the application of the function tmt::tmt_rm(), the item parameters can be 
estimated (see Listing 16).

Listing 16

Demonstration of Item Parameter Estimation in tmt (Only the results of the first six items are presented)

 1 # store the generated data
 2 data_m04 ← dat_m04$data
 3      
 4 # estimate item parameter in tmt
 5 m04_tmt ← tmt::tmt_rm(dat = data_m04, mstdesign = mstdesign_m04)
 6       
 7 # results
 8 summary(m04_tmt)
 9 ## Call: tmt::tmt_rm(dat = data_m04, mstdesign = mstdesign_m04)
10      
11 ## Results of Rasch model (mst) estimation:
12       
13 ## Difficulty parameters:
14 ##              est.b_i1    est.b_i2    est.b_i3    est.b_i4   est.b_i5    est.b_i6
15 ## Estimate   -1.9784103 -1.89534461 -1.84179454 -1.81459534 -1.7758122 -1.71712684
16 ## Std. Error  0.0322033  0.03156631  0.03117581  0.03098338  0.0307158  0.03032584

Summary and Discussion
This article introduces the application of the package tmt for item parameter estimation 
in MST designs. Together with dexterMST, tmt is an R package that implemented 
the modified CML estimation approach for deterministic MST designs (Zwitser & Maris, 
2015). This modification is necessary to utilize the CML estimation method without ob­
taining severely biased item parameter estimates, as would be the case with the common 
CML estimation method in MST designs (Glas, 1988). While the first part of this article 
outlines the modification of the CML estimation, the second part illustrates the applica­
tion and functionality of the package tmt. For the introduction of the estimation process, 
MST designs are simulated considering two different routing strategies to outline the 
model specification with the model syntax used in the package tmt.

Next to the deterministic routing approach, a separate section also discusses probabil­
istic routing strategies and their implementation in tmt. This strategy is applied, for 
example, in international educational large-scale assessments studies, to obtain e.g. a 
minimum number of item responses. For probabilistic routing again a modification of 
the CML method is necessary as proposed by Steinfeld and Robitzsch (2021b). Derived 
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from the examples, the R package tmt provides asymptotically unbiased item parameter 
estimates in MST designs with deterministic and probabilistic routing strategies. Other 
examples can be found in the vignette and the supplemental material of the package 
tmt (Steinfeld & Robitzsch, 2022, 2023). As an outlook for future versions of the package 
tmt, extensions regarding usability are planned. Here, the automatic adaptation of the 
specified MST design should be highlighted. It is expected that missing values might 
occur especially in the last module, due to lack of time (not reached). In those cases, it 
is necessary to adapt the rules of the specified MST design for each occurring missing 
value pattern if those items should be kept as missing values and not recoded as not 
solved. This might be considered as a disadvantage compared to the MML method, which 
can be faced in a future version of the package tmt with an implemented algorithm for 
automatic adaptation of the MST design (see also Steinfeld & Robitzsch, 2021a, for a more 
detailed comparison of different estimation methods in MST designs). Furthermore, it is 
conceivable that in the next release, not only dichotomous but also polytomous scored 
items can be considered with the implementation of the partial credit model (Masters, 
1982).

Funding: The authors have no funding to report.

Acknowledgments: The authors have no additional (i.e., non-financial) support to report.

Competing Interests: The authors declare no conflict of interest. The authors received no financial support for the 

research.

Supplementary Materials
The tmt R script vignettes are freely available at Steinfeld & Robitzsch (2023).

Index of Supplementary Materials

Steinfeld, J., & Robitzsch, A. (2023). Supplementary materials to "Estimating item parameters in 
multistage designs with the tmt package in R" [tmt R script vignettes]. OSF. 
https://doi.org/10.17605/OSF.IO/EZ87S 

References

Andersen, E. B. (1972). The numerical solution of a set of conditional estimation equations. Journal 
of the Royal Statistical Society: Series B (Methodological), 34(1), 42–54. 
https://doi.org/10.1111/j.2517-6161.1972.tb00887.x

Andersen, E. B. (1973). Conditional inference and models for measuring. Mentalhygiejnisk Forlag.

Estimating Item Parameters in MST with tmt 24

Quantitative and Computational Methods in Behavioral Sciences
2023, Article e10087, https://doi.org/10.5964/qcmb.10087

https://doi.org/10.17605/OSF.IO/EZ87S
https://doi.org/10.1111/j.2517-6161.1972.tb00887.x
https://www.psychopen.eu/


Angoff, W., & Huddleston, E. (1958). The multi-level experiment: A study of a two-level test system 
for the College Board Scholastic Aptitude Test (Statistical Report SR-58-21). New Jersey 
Educational Testing Service.

Baker, F. B., & Kim, S.-H. (2017). The basics of item response theory using R. Springer. 
https://doi.org/10.1007/978-3-319-54205-8

Bechger, T., Koops, J., Partchev, I., & Maris, G. (2022). dexterMST: CML Calibration of multi stage 
tests [R Package Version 0.9.3]. R Core Team. https://CRAN.R-project.org/package=dexterMST

Betz, N. E., & Weiss, D. J. (1974). Simulation studies of two-stage ability testing (Research Report No. 
74-4). University of Minnesota-Minneapolis Psychometric Methods Program.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: 
Application of an EM algorithm. Psychometrika, 46(4), 443–459. 
https://doi.org/10.1007/bf02293801

Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. 
Psychometrika, 35(2), 179–197. https://doi.org/10.1007/BF02291262

Brennan, R. L. (2006). Perspectives on the evolution and future of educational measurement. In R. 
L. Brennan (Ed.), Educational measurement (4th ed., pp. 1–16). Praeger Publishers. 
https://doi.org/10.1007/978-0-387-85461-8

Bürkner, P.-C. (2021). Bayesian item response modeling in R with brms and Stan. Journal of 
Statistical Software, 100(5), 1–54. https://doi.org/10.18637/jss.v100.i05

Casabianca, J. M. (2011). Loglinear smoothing for the latent trait distribution: A two-tiered evaluation 
(Doctoral dissertation). Fordham University.

Casabianca, J. M., & Lewis, C. (2015). IRT item parameter recovery with marginal maximum 
likelihood estimation using loglinear smoothing models. Journal of Educational and Behavioral 
Statistics, 40(6), 547–578. https://doi.org/10.3102/1076998615606112

Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R 
environment. Journal of Statistical Software, 48(6), 1–29. https://doi.org/10.18637/jss.v048.i06

Chang, H.-H. (2015). Psychometrics behind computerized adaptive testing. Psychometrika, 80(1), 1–
20. https://doi.org/10.1007/s11336-014-9401-5

Chen, H., Yamamoto, K., & von Davier, M. (2014). Controlling multistage testing exposure rates in 
international large-scale assessments. In A. Yan, A. A. von Davier, & C. Lewis (Eds.), 
Computerized multistage testing: Theory and applications (pp. 391–409). CRC Press. 
https://doi.org/10.1201/b16858

Choi, Y.-J., & Asilkalkan, A. (2019). R packages for item response theory analysis: Descriptions and 
features. Measurement: Interdisciplinary Research and Perspectives, 17(3), 168–175. 
https://doi.org/10.1080/15366367.2019.1586404

Clarke, B. S., & Junker, B. W. (1991). Inference from the product of marginals of a dependent 
likelihood (Technical Report No. 91-10). Purdue University Department of Statistics.

Cliff, N., & Donoghue, J. R. (1992). Ordinal test fidelity estimated by an item sampling model. 
Psychometrika, 57(2), 217–236. https://doi.org/10.1007/BF02294506

Steinfeld & Robitzsch 25

Quantitative and Computational Methods in Behavioral Sciences
2023, Article e10087, https://doi.org/10.5964/qcmb.10087

https://doi.org/10.1007/978-3-319-54205-8
https://CRAN.R-project.org/package=dexterMST
https://doi.org/10.1007/bf02293801
https://doi.org/10.1007/BF02291262
https://doi.org/10.1007/978-0-387-85461-8
https://doi.org/10.18637/jss.v100.i05
https://doi.org/10.3102/1076998615606112
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.1007/s11336-014-9401-5
https://doi.org/10.1201/b16858
https://doi.org/10.1080/15366367.2019.1586404
https://doi.org/10.1007/BF02294506
https://www.psychopen.eu/


Cronbach, L. J., & Gleser, G. C. (1957). Psychological tests and personnel decisions. University of 
Illinois Press.

Dean, V., & Martineau, J. (2012). A state perspective on enhancing assessment and accountability 
systems through systematic implementation of technology. In R. W. Lissitz & H. Jiao (Eds.), 
Computers and their impact on state assessment: Recent history and predictions for the future (pp. 
25–53). Information Age Publishing.

Debelak, R., Strobl, C., & Zeigenfuse, M. D. (2022). An introduction to the Rasch model with examples 
in R. CRC Press. https://doi.org/10.1201/9781315200620

De Boeck, P. (2008). Random item IRT models. Psychometrika, 73(4), 533–559. 
https://doi.org/10.1007/s11336-008-9092-x

De Boeck, P., Bakker, M., Zwitser, R., Nivard, M., Hofman, A., Tuerlinckx, F., & Partchev, I. (2011). 
The estimation of item response models with the lmer function from the lme4 package in R. 
Journal of Statistical Software, 39(12), 1–28. https://doi.org/10.18637/jss.v039.i12

Douglas, J. (1997). Joint consistency of nonparametric item characteristic curve and ability 
estimation. Psychometrika, 62(1), 7–28. https://doi.org/10.1007/BF02294778

Douglas, J. A. (2001). Asymptotic identifiability of nonparametric item response models. 
Psychometrika, 66(4), 531–540. https://doi.org/10.1007/BF02296194

Draxler, C. (2018). Bayesian conditional inference for Rasch models. AStA Advances in Statistical 
Analysis, 102(2), 245–262. https://doi.org/10.1007/s10182-017-0303-6

Eddelbuettel, D., & Balamuta, J. J. (2018). Extending R with C++: A brief introduction to Rcpp. 
American Statistician, 72(1), 28–36. https://doi.org/10.1080/00031305.2017.1375990

Eggen, T. J. H. M., & Verhelst, N. D. (2011). Item calibration in incomplete testing designs. 
Psicologica: International Journal of Methodology and Experimental Psychology, 32(1), 107–132. 

Ellis, J. L., & Junker, B. W. (1997). Tail-measurability in monotone latent variable models. 
Psychometrika, 62(4), 495–523. https://doi.org/10.1007/BF02294640

Fischer, G. H. (1974). Einführung in die Theorie psychologischer Tests: Grundlagen und Anwendungen 
[Introduction to the theory of psychological tests: Fundamentals and applications]. Huber.

Fischer, G. H. (2007). Rasch models. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics: 
Psychometrics (pp. 515–585). Elsevier. https://doi.org/10.1016/S0169-7161(06)26016-4

Fischer, G. H., & Molenaar, I. W. (1995). Rasch models: Foundations, recent developments, and 
applications. Springer. https://doi.org/10.1007/978-1-4612-4230-7

Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal, 13(3), 317–322. 
https://doi.org/10.1093/comjnl/13.3.317

Formann, A. K. (1986). A note on the computation of the second-order derivatives of the 
elementary symmetric functions in the Rasch model. Psychometrika, 51(2), 335–339. 
https://doi.org/10.1007/BF02293990

Fox, J.-P. (2007). Multilevel IRT modeling in practice with the package mlirt. Journal of Statistical 
Software, 20(5), 1–16. https://doi.org/10.18637/jss.v020.i05

Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. Springer. 
https://doi.org/10.1007/978-1-4419-0742-4

Estimating Item Parameters in MST with tmt 26

Quantitative and Computational Methods in Behavioral Sciences
2023, Article e10087, https://doi.org/10.5964/qcmb.10087

https://doi.org/10.1201/9781315200620
https://doi.org/10.1007/s11336-008-9092-x
https://doi.org/10.18637/jss.v039.i12
https://doi.org/10.1007/BF02294778
https://doi.org/10.1007/BF02296194
https://doi.org/10.1007/s10182-017-0303-6
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.1007/BF02294640
https://doi.org/10.1016/S0169-7161(06)26016-4
https://doi.org/10.1007/978-1-4612-4230-7
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1007/BF02293990
https://doi.org/10.18637/jss.v020.i05
https://doi.org/10.1007/978-1-4419-0742-4
https://www.psychopen.eu/


Fox, P., Hall, A., & Schryer, N. L. (1978). The PORT mathematical subroutine library. ACM 
Transactions on Mathematical Software (TOMS), 4(2), 104–126. 
https://doi.org/10.1145/355780.355783

Gay, D. M. (1990). Usage summary for selected optimization routines (Computing Science Technical 
Report No. 153). AT&T Bell Laboratories.

Glas, C. A. W. (1988). The Rasch model and multistage testing. Journal of Educational Statistics, 
13(1), 45–52. https://doi.org/10.2307/1164950

Han, K. C. T., & Guo, F. (2014). Multistage testing by shaping modules on the fly. In D. Yan, A. A. 
von Davier, & C. Lewis (Eds.), Computerized multistage testing: Theory and applications (pp. 
119–133). CRC Press. https://doi.org/10.1201/b16858

Hendrickson, A. (2007). An NCME instructional module on multistage testing. Educational 
Measurement: Issues and Practice, 26(2), 44–52. https://doi.org/10.1111/j.1745-3992.2007.00093.x

Hohensinn, C. (2018). Pcirt: An R package for polytomous and continuous Rasch models. Journal of 
Statistical Software, 84(Code Snippet 2), 1–14. https://doi.org/10.18637/jss.v084.c02

Holland, P. W. (1990). On the sampling theory roundations of item response theory models. 
Psychometrika, 55(4), 577–601. https://doi.org/10.1007/BF02294609

Holland, P. W., & Thayer, D. T. (2000). Univariate and bivariate loglinear models for discrete test 
score distributions. Journal of Educational and Behavioral Statistics, 25(2), 133–183. 
https://doi.org/10.3102/10769986025002133

Holland, P. W., & Wainer, H. (1993). Differential item functioning. Lawrence Erlbaum. 
https://doi.org/10.4324/9780203357811

Jodoin, M. G., Zenisky, A., & Hambleton, R. K. (2006). Comparison of the psychometric properties 
of several computer-based test designs for credentialing exams with multiple purposes. Applied 
Measurement in Education, 19(3), 203–220. https://doi.org/10.1207/s15324818ame1903_3

Johnson, M. S. (2007). Marginal maximum likelihood estimation of item response models in R. 
Journal of Statistical Software, 20(10), 1–24. https://doi.org/10.18637/jss.v020.i10

Junker, B. W. (1993). Conditional association, essential independence and monotone 
unidimensional item response models. Annals of Statistics, 21(3), 1359–1378. 
https://doi.org/10.1214/aos/1176349262

Kaplan, M., & de la Torre, J. (2020). A blocked-CAT procedure for CD-CAT. Applied Psychological 
Measurement, 44(1), 49–64. https://doi.org/10.1177/0146621619835500

Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence 
of infinitely many incidental parameters. Annals of Mathematical Statistics, 27(4), 887–906. 
https://www.jstor.org/stable/2237188

Kim, S., Moses, T., & Yoo, H. H. (2015). Effectiveness of item response theory (IRT) proficiency 
estimation methods under adaptive multistage testing. ETS Research Report Series, 2015(1), 1–19. 
https://doi.org/10.1002/ets2.12057

Kim, H., & Plake, B. S. (1993, April 13–15). Monte Carlo simulation comparison of two-stage testing 
and computerized adaptive testing [Conference Presentation]. National Council on 
Measurement in Education Annual Meeting. Atlanta, GA, USA.

Steinfeld & Robitzsch 27

Quantitative and Computational Methods in Behavioral Sciences
2023, Article e10087, https://doi.org/10.5964/qcmb.10087

https://doi.org/10.1145/355780.355783
https://doi.org/10.2307/1164950
https://doi.org/10.1201/b16858
https://doi.org/10.1111/j.1745-3992.2007.00093.x
https://doi.org/10.18637/jss.v084.c02
https://doi.org/10.1007/BF02294609
https://doi.org/10.3102/10769986025002133
https://doi.org/10.4324/9780203357811
https://doi.org/10.1207/s15324818ame1903_3
https://doi.org/10.18637/jss.v020.i10
https://doi.org/10.1214/aos/1176349262
https://doi.org/10.1177/0146621619835500
https://www.jstor.org/stable/2237188
https://doi.org/10.1002/ets2.12057
https://www.psychopen.eu/


Kubinger, K., & Holocher-Ertl, S. (2014). AID 3: Adaptives Intelligenz Diagnostikum 3 [AID 3: 
Adaptive Intelligence Diagnostic 3]. Beltz-Test.

Kubinger, K. D., Steinfeld, J., Reif, M., & Yanagida, T. (2012). Biased (conditional) parameter 
estimation of a Rasch model calibrated item pool administered according to a branched testing 
design. Psychological Test and Assessment Modeling, 52(4), 450–460. 

Levy, R., & Mislevy, R. J. (2017). Bayesian psychometric modeling. CRC Press. 
https://doi.org/10.1201/9781315374604

Linn, R. L., Rock, D. A., & Cleary, T. A. (1969). The development and evaluation of several 
programmed testing methods. Educational and Psychological Measurement, 29(1), 129–146. 
https://doi.org/10.1177/001316446902900109

Liou, M. (1994). More on the computation of higher-order derivatives of the elementary symmetric 
functions in the Rasch model. Applied Psychological Measurement, 18(1), 53–62. 
https://doi.org/10.1177/014662169401800105

Lord, F. M. (1968). Some test theory for tailored testing. ETS Research Bulletin Series, 1968(2), i–62. 
https://doi.org/10.1002/j.2333-8504.1968.tb00562.x

Lord, F. M. (1971a). Robbins-Monro procedures for tailored testing. Educational and Psychological 
Measurement, 31(1), 3–31. https://doi.org/10.1177/001316447103100101

Lord, F. M. (1971b). A theoretical study of two-stage testing. Psychometrika, 36(3), 227–242. 
https://doi.org/10.1007/BF02297844

Lord, F. M. (1974). Practical methods for redesigning a homogeneous test, also for designing a 
multilevel test. ETS Research Bulletin Series, 1974(1), i–26. 
https://doi.org/10.1002/j.2333-8504.1974.tb00659.x

Lord, F. M. (1980). Applications of Item Response Theory to practical testing problems. Erlbaum. 
https://doi.org/10.4324/9780203056615

Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). Statistical theories of mental test scores. Addison-
Wesley.

Luecht, R. M., & Nungester, R. J. (1998). Some practical examples of computer-adaptive sequential 
testing. Journal of Educational Measurement, 35(3), 229–249. 
https://doi.org/10.1111/j.1745-3984.1998.tb00537.x

Luo, X., & Wang, X. (2019). Dynamic multistage testing: A highly efficient and regulated adaptive 
testing method. International Journal of Testing, 19(3), 227–247. 
https://doi.org/10.1080/15305058.2019.1621871

Magis, D., Yan, D., & von Davier, A. A. (2017). Computerized adaptive and multistage testing with R: 
Using packages catR and mstR. Springer. https://doi.org/10.1007/978-3-319-69218-0

Mair, P., & Hatzinger, R. (2007a). CML based estimation of extended Rasch models with the eRm 
package in R. Psychology Science, 49(1), 26–43. 

Mair, P., & Hatzinger, R. (2007b). Extended Rasch modeling: The eRm package for the application of 
IRT models in R. Journal of Statistical Software, 20(9), 1–20. https://doi.org/10.18637/jss.v020.i09

Mair, P., Hatzinger, R., & Maier, M. J. (2021). eRm: Extended Rasch modeling [R package version 
1.0-2. R Core Team. https://CRAN.R-project.org/package=eRm.

Estimating Item Parameters in MST with tmt 28

Quantitative and Computational Methods in Behavioral Sciences
2023, Article e10087, https://doi.org/10.5964/qcmb.10087

https://doi.org/10.1201/9781315374604
https://doi.org/10.1177/001316446902900109
https://doi.org/10.1177/014662169401800105
https://doi.org/10.1002/j.2333-8504.1968.tb00562.x
https://doi.org/10.1177/001316447103100101
https://doi.org/10.1007/BF02297844
https://doi.org/10.1002/j.2333-8504.1974.tb00659.x
https://doi.org/10.4324/9780203056615
https://doi.org/10.1111/j.1745-3984.1998.tb00537.x
https://doi.org/10.1080/15305058.2019.1621871
https://doi.org/10.1007/978-3-319-69218-0
https://doi.org/10.18637/jss.v020.i09
https://CRAN.R-project.org/package=eRm
https://www.psychopen.eu/


Maris, G., & Bechger, T. (2007). Differential item functioning and item bias. In C. R. Rao & S. 
Sinharay (Eds.), Handbook of statistics: Psychometrics (pp. 125–167). Elsevier. 
https://doi.org/10.1016/S0169-7161(06)26005-X

Maris, G., Bechger, T., Koops, J., & Partchev, I. (2022). dexter: Data management and analysis of tests 
[R package version 1.1.5]. R Core Team. https://CRAN.R-project.org/package=dexter.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174. 
Millsap, R. E. (2011). Statistical approaches to measurement invariance. Routledge. 

https://doi.org/10.4324/9780203821961
Molenaar, I. W. (1995a). Estimation of item parameters. In G. H. Fischer & I. W. Molenaar (Eds.), 

Rasch models: Foundations, recent developments, and applications (pp. 39–51). Springer. 
https://doi.org/10.1007/978-1-4612-4230-7_3

Molenaar, I. W. (1995b). Some background for item response theory and the Rasch model. In G. H. 
Fischer & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and 
applications (pp. 3–14). Springer. https://doi.org/10.1007/978-1-4612-4230-7_1

Organisation for Economic Co-operation and Development. (2019a). PISA 2018 assessment and 
analytical framework. OECD Publishing. https://doi.org/10.1787/b25efab8-en

Organisation for Economic Co-operation and Development. (2019b). Technical report of the survey 
of adult skills (PIAAC, 3rd ed.). OECD Publishing.

Organisation for Economic Co-operation and Development. (2020). PISA 2018 technical report. 
OECD Publishing.

Osterlind, S. J., & Everson, H. T. (2009). Differential item functioning (2nd ed.). SAGE Publications. 
https://doi.org/10.4135/9781412993913

Owen, R. J. (1975). A Bayesian sequential procedure for quantal response in the context of adaptive 
mental testing. Journal of the American Statistical Association, 70(350), 351–356. 
https://doi.org/10.1080/01621459.1975.10479871

Paek, I., & Cole, K. (2019). Using R for item response theory model applications. Routledge. 
https://doi.org/10.4324/9781351008167

Peress, M. (2012). Identification of a semiparametric item response model. Psychometrika, 77(2), 
223–243. https://doi.org/10.1007/s11336-012-9253-9

R Core Team. (2021). R: A language and environment for statistical computing [R package version 
4.1.2]. R Core Team. https://CRAN.R-project.org/ 

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Pædagogiske 
Institut.

Rasch, G. (1967). An informal report on a theory of objectivity in comparisons. In L. J. T. van der 
Kamp & C. A. J. Vlek (Eds.), Psychological measurement theory: Proceedings of the NUFFIC 
International Summer Session in Science. University of Leiden.

Rasch, G. (1977). On specific objectivity. An attempt at formalizing the request for generality and 
validity of scientific statements. In M. Blegvad (Ed.), The Danish yearbook of philosophy (pp. 58–
94). Munksgaard.

Steinfeld & Robitzsch 29

Quantitative and Computational Methods in Behavioral Sciences
2023, Article e10087, https://doi.org/10.5964/qcmb.10087

https://doi.org/10.1016/S0169-7161(06)26005-X
https://CRAN.R-project.org/package=dexter
https://doi.org/10.4324/9780203821961
https://doi.org/10.1007/978-1-4612-4230-7_3
https://doi.org/10.1007/978-1-4612-4230-7_1
https://doi.org/10.1787/b25efab8-en
https://doi.org/10.4135/9781412993913
https://doi.org/10.1080/01621459.1975.10479871
https://doi.org/10.4324/9781351008167
https://doi.org/10.1007/s11336-012-9253-9
https://CRAN.R-project.org/
https://www.psychopen.eu/


Rizopoulos, D. (2006). ltm: An R package for latent variable modelling and item response theory 
analyses. Journal of Statistical Software, 17(5), 1–25. http://www.jstatsoft.org/v17/i05/

Robitzsch, A. (2021). sirt: Supplementary item response theory models [R Package Version 3.11-21]. R 
Core Team. https://CRAN.R-project.org/package=sirt

Robitzsch, A., Kiefer, T., & Wu, M. (2021). TAM: Test analysis modules [R package version 3.7-16]. R 
Core Team. https://CRAN.R-project.org/package=TAM

Robitzsch, A., & Steinfeld, J. (2018). immer: Item response models for multiple ratings [R package 
version 1.1-35]. R Core Team. https://CRAN.R-project.org/package=immer

Rupp, A. A., Dey, D. K., & Zumbo, B. D. (2004). To bayes or not to bayes, from whether to when: 
Applications of Bayesian methodology to modeling. Structural Equation Modeling, 11(3), 424–
451. https://doi.org/10.1207/s15328007sem1103_7

Rutkowski, L., Liaw, Y.-L., Svetina, D., & Rutkowski, D. (2022). Multistage testing in heterogeneous 
populations: Some design and implementation considerations. Applied Psychological 
Measurement, 46(6), 494–508. https://doi.org/10.1177/01466216221108123

San Martin, E., & De Boeck, P. (2015). What do you mean by a difficult item? On the interpretation of 
the difficulty parameter in a Rasch model. In R. E. Millsap, D. M. Bolt, L. A. van der Ark, & W.-C. 
Wang (Eds.), Quantitative psychology research. The 78th Annual Meeting of the Psychometric 
society (pp. 1–14). Springer. https://doi.org/10.1007/978-3-319-07503-7

Schnipke, D. L., & Reese, L. M. (1997, March 24–28). A comparison of testlet-based test designs for 
computerized adaptive testing [Conference presentation]. Annual meeting of the American 
Educational Research Association, Chicago, IL, USA.

Singh, S., & Dixit, A. (2016). Performance of the Heston’s stochastic volatility model: A study in 
Indian index options market. Theoretical Economics Letters, 6(2), 151–165. 

Steinfeld, J., & Robitzsch, A. (2021a). Item parameter estimation in multistage designs: A 
comparison of different estimation approaches for the Rasch model. Psych, 3(3), 279–307. 
https://doi.org/10.3390/psych3030022

Steinfeld, J., & Robitzsch, A. (2021b). Conditional maximum likelihood estimation in probability-
branched multistage designs. PsyArXiv. https://doi.org/10.31234/osf.io/ew27f

Steinfeld, J., & Robitzsch, A. (2022). tmt: Estimation of the Rasch model for multistage tests (R 
Package Version 0.3.0-20) [Computer software]. https://CRAN.R-project.org/package=tmt

Strout, W. F. (1990). A new item response theory modeling approach with applications to 
unidimensionality assessment and ability estimation. Psychometrika, 55(2), 293–325. 
https://doi.org/10.1007/BF02295289

Svetina, D., Liaw, Y.-L., Rutkowski, L., & Rutkowski, D. (2019). Routing strategies and optimizing 
design for multistage testing in international large-scale assessments. Journal of Educational 
Measurement, 56(1), 192–213. https://doi.org/10.1111/jedm.12206

Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. 
Psychometrika, 47(2), 175–186. https://doi.org/10.1007/BF02296273

van der Linden, W. J., & Glas, C. A. (2010). Elements of adaptive testing. Springer. 
https://doi.org/10.1007/978-0-387-85461-8

Estimating Item Parameters in MST with tmt 30

Quantitative and Computational Methods in Behavioral Sciences
2023, Article e10087, https://doi.org/10.5964/qcmb.10087

http://www.jstatsoft.org/v17/i05/
https://CRAN.R-project.org/package=sirt
https://CRAN.R-project.org/package=TAM
https://CRAN.R-project.org/package=immer
https://doi.org/10.1207/s15328007sem1103_7
https://doi.org/10.1177/01466216221108123
https://doi.org/10.1007/978-3-319-07503-7
https://doi.org/10.3390/psych3030022
https://doi.org/10.31234/osf.io/ew27f
https://CRAN.R-project.org/package=tmt
https://doi.org/10.1007/BF02295289
https://doi.org/10.1111/jedm.12206
https://doi.org/10.1007/BF02296273
https://doi.org/10.1007/978-0-387-85461-8
https://www.psychopen.eu/


Verhelst, N. D., Glas, C., & Van der Sluis, A. (1984). Estimation problems in the Rasch model: The 
basic symmetric functions. Computational Statistics Quarterly, 1(3), 245–262. 

Wainer, H., Dorans, N. J., Flaugher, R., Green, B. F., Mislevy, R. J., Steinberg, L., & Thissen, D. (2000). 
Computerized adaptive testing: A primer (2nd ed.). Lawrence Erlbaum.

Wainer, H., & Kiely, G. L. (1987). Item clusters and computerized adaptive testing: A case for 
testlets. Journal of Educational Measurement, 24(3), 185–201. 

Wang, C., Chen, P., & Jiang, S. (2020). Item calibration methods with multiple subscale multistage 
testing. Journal of Educational Measurement, 57(1), 3–28. https://doi.org/10.1111/jedm.12241

Weiss, D. J. (1976). Adaptive testing research in Minnesota: Overview, recent results, and future 
directions. In C. L. Clark (Ed.), Proceedings of the First Conference on Computerized Adaptive 
Testing (pp. 24–35). United States Civil Service Commission.

Weiss, D. J. (1982). Improving measurement quality and efficiency with adaptive testing. Applied 
Psychological Measurement, 6(4), 473–492. https://doi.org/10.1177\%2F014662168200600408

Weiss, D. J. (1983). New horizons in testing. Academic Press. https://doi.org/10.1016/C2009-0-03014-1
Weiss, D. J., & Kingsbury, G. G. (1984). Application of computerized adaptive testing to educational 

problems. Journal of Educational Measurement, 21(4), 361–375. 
https://doi.org/10.1111/j.1745-3984.1984.tb01040.x

Wright, B. D., & Stone, M. (1999). Measurement essentials (2nd ed.). 
https://www.rasch.org/measess/me-all.pdf

Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data. ETS 
Research Report Series, 2008(1), i–18. https://doi.org/10.1002/j.2333-8504.2008.tb02113.x

Yamamoto, K., & Khorramdel, L. (2018). Introducing multistage adaptive testing into international 
large-scale assessments designs using the example of PIAAC. Psychological Test and Assessment 
Modeling, 60(3), 347–368. 

Yamamoto, K., Shin, H. J., & Khorramdel, L. (2018). Multistage adaptive testing design in 
international large-scale assessments. Educational Measurement: Issues and Practice, 37(4), 16–
27. https://doi.org/10.1111/emip.12226

Yan, D., Lewis, C., & von Davier, A. A. (2014). Overview of computerized multistage tests. In D. 
Yan, A. A. von Davier, & C. Lewis (Eds.), Computerized multistage testing: Theory and 
applications (pp. 3–20). CRC Press. https://doi.org/10.1201/b16858

Yan, D., von Davier, A. A., & Lewis, C. (2014). Computerized multistage testing: Theory and 
applications. CRC Press. https://doi.org/10.1201/b16858

Zeileis, A., Strobl, C., Wickelmaier, F., Komboz, B., Kopf, J., Schneider, L., & Debelak, R. (2021). 
psychotools: Infrastructure for psychometric modeling [R package version 0.7-0]. R Core Team. 
https://CRAN.R-project.org/package=psychotools

Zenisky, A., Hambleton, R. K., & Luecht, R. M. (2009). Multistage testing: Issues, designs, and 
research. In W. J. van der Linden & C. A. Glas (Eds.), Elements of adaptive testing (pp. 355–372). 
Springer. https://doi.org/10.1007/978-0-387-85461-8

Zheng, Y., & Chang, H.-H. (2014). On-the-fly assembled multistage adaptive testing. Applied 
Psychological Measurement, 39(2), 104–118. https://doi.org/10.1177/0146621614544519

Steinfeld & Robitzsch 31

Quantitative and Computational Methods in Behavioral Sciences
2023, Article e10087, https://doi.org/10.5964/qcmb.10087

https://doi.org/10.1111/jedm.12241
https://doi.org/10.1177/%2F014662168200600408
https://doi.org/10.1016/C2009-0-03014-1
https://doi.org/10.1111/j.1745-3984.1984.tb01040.x
https://www.rasch.org/measess/me-all.pdf
https://doi.org/10.1002/j.2333-8504.2008.tb02113.x
https://doi.org/10.1111/emip.12226
https://doi.org/10.1201/b16858
https://doi.org/10.1201/b16858
https://CRAN.R-project.org/package=psychotools
https://doi.org/10.1007/978-0-387-85461-8
https://doi.org/10.1177/0146621614544519
https://www.psychopen.eu/


Zwitser, R. J., & Maris, G. (2015). Conditional statistical inference with multistage testing designs. 
Psychometrika, 80(1), 65–84. https://doi.org/10.1007/s11336-013-9369-6

Estimating Item Parameters in MST with tmt 32

PsychOpen GOLD is a publishing service by
Leibniz Institute for Psychology (ZPID), Germany.
www.leibniz-psychology.org

https://doi.org/10.1007/s11336-013-9369-6
https://www.leibniz-psychology.org/
https://www.psychopen.eu/

	Estimating Item Parameters in MST with tmt
	(Introduction)
	Multistage Testing and Routing Strategies
	Parameter Estimation
	CML Estimation in MST Designs

	Implementation in R: The Package tmt
	MST Model Specification
	Data Generation
	Parameter Estimation
	Application of the tmt Package in a Nutshell
	Illustration of Parameter Estimation in Sequential Deterministic MST Designs
	Illustration of Parameter Estimation in Cumulative Deterministic MST Designs
	Illustration of Parameter Estimation in Sequential Probabilistic MST Designs
	Illustration of Parameter Estimation in Cumulative Probabilistic MST Designs

	Summary and Discussion
	(Additional Information)
	Funding
	Acknowledgments
	Competing Interests

	Supplementary Materials
	References


